БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201улирования длины дуги, открытому В. И. Дятловым). В 1942 по дну Ладожского оз. был проложен сварной трубопровод для доставки топлива в осаждённый Ленинград. Разработаны методы подводной сварки и резки (К. К. Хренов и др.), используемые при ремонте повреждённых кораблей. Не прекращалась и н.-и. работа: В. П. Никитин предложил сварку с жидким присадочным металлом, Б. Е. Патон и И. К. Олейник - шланговую сварку под флюсом. Проводились исследования по точечной сварке металла больших толщин (А. С. Гельман), по металлургич. и металловедч. процессам при сварке (К. В. Любавский, А. М. Макара) и др.

В послевоен. годы развитие сварочной техники велось по трём направлениям: расширение механизации и автоматизации; изыскание новых способов нагрева металла; изучение и совершенствование металлургич. процессов. В кон. 50-х гг. в пром-сти используют автоматич. сварку под слоем флюса, электрошлаковую сварку, газоэлектрич. способы сварки, механизир. наплавку металлов. С помощью автоматич. сварки перешли к поточному крупносекц. методу постройки судов, создали на её базе произ-во газо- и нефтепроводных труб большого диаметра, решили проблему цельносварного мостостроения. Электрошлаковая сварка, разработанная в Ин-те электросварки им. Е. О. Патона, позволила преобразовать технологию и орг-цию произ-ва массивных крупногабаритных изделий - прокатного оборудования, мощных прессов, валов гидротурбин, доменных комплексов и т. п. Сварку использовали при стр-ве таких уникальных сооружений, как крупнейший в Европе цельносварной мост через Днепр в Киеве (1953), каркасы московских высотных зданий (нач. 50-х гг.), атомные ледоколы «Ленин» (1959) и «Арктика» (1974). В 60- нач. 70-х гг. с помощью сварки построены мощные гидрогенераторы и гидропрессы, магистральные газо- и нефтепроводы, АЭС, цельносварные танкеры большого водоизмещения. Сварку используют в тяжёлом, энергетич. и трансп. машиностроении, электронной, полупроводниковой технике и в др. отраслях. Для повышения уровня сварочной техники созданы показательные з-ды, цехи и участки сварных конструкций.

В 70-х гг. н.-и. работа в области сварки сосредоточена на решении следующих проблем: работоспособность сварных соединений, расчёт сварочных напряжений и деформаций (Николаев и др.); развитие теории источников тепла при сварке (Б. Е. Патон, Рыкалин, Хренов и др.); разработка физико-химич. и металлургич. основ сварки (Б. И. Медовар, В. В. Фролов, Любавский, М. X. Шоршоров и др.); технология сварки, совершенствование сварочных материалов (А. И. Акулов, Г. Д. Никифоров и др.). Разработаны принципиально новые эффективные методы - диффузионная сварка в вакууме, в защитных и инертных газах, сварка трением, электроннолучевая и лазерная сварка, сварка дуговой плазмой и др. Сварку осуществляют в любых пространственных положениях, на суше, под водой. На космич. корабле «Союз-6» впервые в мире проводились опыты по сварке в космосе (1969, В. Н. Кубасов, Г. С. Шонин). Ин-том электросварки им. Е. О. Патона (СССР) и Центр, ин-том сварки (ГДР) созданы установки для электроннолучевой сварки изделий автомоб. пром-сти (1974). Н.-и. работы по сварке ведутся в ЦНИИТМАШе, Ин-те электросварки им. Е. О. Патона, МВТУ им. Баумана, Всесоюзном НИИ электросварочного оборудования, Ин-те металлургии им. Байкова, ВНИИавтогенмаше, Моск. авиационно-технологич. ин-те (МАТИ), Ленингр. политехнич. ин-те, Моск. энергетич. ин-те, в др. НИИ и на кафедрах вузов. См. также Сварка, Сварное соединение, Сварочное оборудование, Сварочные материалы.

Механическая обработка. Первые теоретич. исследования процесса резания металлов были проведены в России в 1868-69 И. А. Тиме. Основы науки о резании металлов были заложены рус. учёными К. А. Зворыкиным, А. А. Бриксом, А. В. Гадолиным и др. Широкие науч. исследования в области резания металлов развернулись после Окт. революции 1917 благодаря быстрому развитию социалистич. индустрии, в частности станкостроения, инструм. пром-сти, металлообработки. Начало исследованиям в области процесса резания положили работы А. Н. Челюсткина, обосновавшего формулу для силы резания (1922- 1926). Базой для н.-и. работ в области резания металлов, разработки новых станков и инструментов, подготовки науч. кадров стал созданный в 20-х гг. трест Оргаметалл. В нач. 30-х гг. в Экспериментальном НИИ металлорежущих станкоз (ЭНИМС), Моск. станкоинструм. ин-тс (СТАНКИН) и конструкторских бюро мн. заводов развернулись науч. и проектные работы по осн. проблемам станкостроения: созданию отд. типов станков и их типажа в целом, увеличению быстроходности и мощности станков, изысканию совершенных конструкций деталей и механизмов, применению автоматич. управления, повышению износостойкости и долговечности станков. К этой работе были привлечены учёные и специалисты (А. С. Бриткин, Г. М. Головин, В. И. Дикушин, Д. Н. Решетов, Г. А. Шаумян и др.). В 1934 в ЭНИМСе был создан первый в Европе агрегатный многошпиндельный станок.

В 30-е гг. проводились интенсивные исследоват. работы в области создания новых инструментов и материалов для них. После выпуска первого отечественного прессованного твёрдого сплава «победите (1929) в лабораториях вузов и заводов, в созданных в нач. 30-х гг. Всесоюзном н.-и. инструм. институте (ВНИИ), Всесоюзном НИИ абразивов и шлифования (ВНИИАШ), СТАНКИНе велись исследования с целью широкого внедрения в произ-во твердосплавного инструмента, создания новых твёрдых сплавов и др. инструм. материалов (минералокерамики), позволяющих повысить режимы резания. В разработке основ конструирования и расчёта режущего инструмента участвовали Г. И. Грановский, В. М. Матюшкин, И. И. Семенченко и др.

К нач. 30-х гг. относятся первые после Окт. революции науч. работы в области технологии машиностроения (А. П. Соколовский), продолженные затем Б. С. Ба-лакшиным (точность регулирования размеров в процессе обработки), Н. А. Бородачёвым (теория точности), К. В. Вотиновым (проблемы жёсткости станков), О. М. Кованом (теория припусков), А. Б. Яхиным (теория баз) и др. Эти работы сыграли большую роль в решении мн. технич. проблем, связанных с механич. обработкой материалов.

Важное значение для развития науки о резании металлов и создания сов. школы резания имел период 1935-41, когда стахановское движение передовиков произ-ва опрокинуло нормативы, тормозившие дальнейшее развитие техники, в т. ч. и в области резания металлов. Декабрьский (1935) пленум ЦК ВКП(б) предложил пересмотреть технич. руководящие материалы, на к-рых базировались нормативы. С этой целью была создана Комиссия по резанию металлов для объединения всех науч. исследований в стране в этой области. В работе Комиссии участвовали не только учёные (И. М. Беспрозванный, В. А. Кривоухов, Е. П. Надеинская, А. В. Панкин и др.), но и заводские коллективы, инженеры, мастера и рабочие. Было проведено по единой методике св. 120 000 экспериментов по исследованию процесса резания, установлены силовые и стойкостные зависимости для всех видов металлорежущего инструмента и по всем осн. металлам, применяемым в машиностроении, созданы инж. методы расчёта геометрии режущей части инструмента и оптим. режимов обработки различных материалов. В разработке физич. основ процесса резания важную роль сыграли работы учёных в области смежных наук (В. Д. Кузнецов, П. А. Ребиндер и др.).

Перед Великой Отечеств, войной 1941- 1945 станкостроение выпускало станки многих типов (в т. ч. агрегатные и специальные) с высокой степенью автоматизации, чему способствовали н.-и. работы, выполненные в АН СССР, отраслевых ин-тах и специализиров. лабораториях. Первые проекты автоматич. линий из агрегатных станков были разработаны в ЭНИМСе ещё в 1936. В годы войны станки-автоматы, автоматич. и полуавтоматич. линии сыграли важную роль в массовом произ-ве вооружения при нехватке рабочей силы (только одна полуавтоматич. линия для расточки и сверления отверстий в корпусных деталях танка Т-34 заменила 19 тяжёлых расточных и радиально-сверлнльных станков и высвободила 36 квалифициров. рабочих). В это же время значительно увеличился типаж станков (лишь одно конструкторское бюро под рук. Г. И. Неклюдова разработало ок. 190 типов оригинальных станков для произ-ва миномётного вооружения).

В первые послевоен. годы н.-и. и проектные ин-ты работали над проблемами скоростного резания. Одно из осн. условий перехода на повыш. скорости обработки - автоматизация управления станками путём электрификации и гидрофикации привода. В 1946 в ЭНИМСе был разработан бесступенчатый ионный электропривод станков с электронным управлением, сконструированы (Н. А. Волчек, Ю. Б. Эрпшер) для автотракторной пром-сти автоматич. линии из 14, 45 и 25 агрегатных станков, основанные на принципе сквозного (поточного) прохода деталей, транспортируемых с помощью гидропривода. В создании станков-автоматов и автоматич. линий участвовали также ВНИИ, ВНИИАШ и др. н.-и. ин-ты. Основы теории проектирования станков-автоматов разработаны Г. А. Шаумяном (1948). Впервые в мировой практике был спроектирован и построен в 1949 (начал работать в 1950) комплексно-автоматизированный з-д поршней.

В 50-70-х гг., выполняя задачи по улучшению отраслевой структуры промышленности и технич. перевооружению народного хозяйства, отраслевые НИИ и конструкторские бюро уделяли особое внимание проектированию и отработке конструкций прецизионных станков, тяжёлых и уникальных станков, станков для электрофизич. и электрохимич. обработки (ультразвуковой, электроэрозионной, лазерной, плазменной и др.), многооперац. станков с автоматич. сменой инструментов, станков с числовым программным управлением (ЧПУ). Для заводов, выпускающих универсальные станки, к 1965 была разработана единая унифициров. серия моделей и их модификаций. Разработкой методов расчёта и конструирования станков занимались Н. С. Ачеркан, В. С. Васильев, В. И. Дикушин, В. Ф. Кудинов, вопросами технологии - А. С. Проников, проблемами износостойкости станков - Д. Н. Решетов.

Освоение выпуска новых машин и оборудования, связанное с применением жаропрочных, нержавеющих, эрозионно-стойких, тугоплавких и др. труднообрабатываемых материалов, потребовало разработки новых инструм. материалов, изменения конструкций режущего инструмента, иного подхода к выбору рациональных условий обработки резанием. В кон. 50 - нач. 70-х гг. на основе работ Ин-та физики высоких давлений АН СССР (А. Ф. Верещагин) и Ин-та сверхтвёрдых материалов АН УССР (В. Н. Бакуль) созданы сверхтвёрдые инструм. материалы - синтетич. алмазы, эльбор, гексанит и др. СССР занимает ведущее место в мире по произ-ву сверхтвёрдых материалов. Так, предназначенный для обработки высокотвёрдых сложнолегиров. сплавов эльбор (его произ-во впервые освоено ленингр. абразивным з-дом «Ильич») экспортируется во мн. страны. В создании новых инструментов и материалов большое значение имели работы Г. Н. Сахарова, В. Н. Слесарева, Н. Е. Филоненко-Бородича, Д. Ф. Шпо-таковского и др. Теорию обработки металлов резанием обогатили труды Н. Н. Зорева, М. В. Касьяна, Т. Н. Лоладзе и др. Важную роль в развитии прогрессивных методов механич. обработки металлов сыграли рабочие-новаторы: Г. С. Борткевич, С. И. Бушуев, П. Б. Быков, В. А. Карасёв, В. А. Колесов, В. К. Семинский и мн. др.

В области технологии машиностроения в 50-70-х гг. проведены многочисл. науч. исследования и решены проблемы адаптивного управления станками (Б. С. Балакшин), групповой обработки (С. П. Митрофанов), контактной жёсткости (Э. В. Рыжов), определения влияния различных факторов на точность обработки и качество поверхности (П. Е. Дьяченко). В разработке проблем технологии машиностроения участвовали также М. Е. Егоров, В. С. Корсаков и др. Сов. учёным (И. В. Кудрявцеву, Е. Г. Коновалову, С. В. Серенсену и др.) принадлежит приоритет в разработке основ упрочняющей технологии, при к-рой в процессе механич. обработки улучшаются свойства материалов в направлении, обеспечивающем повышенную эксплуатац. надёжность и долговечность изделий.

В 10-й пятилетке (1976-80) отраслевые н.-и., проектные и технологич. ин-ты, конструкторские бюро з-дов работают над созданием автоматич. оборудования с малогабаритными электронными системами числового программного управления (ЧПУ) и контроля, улучшением структуры выпускаемого металлообр. оборудования (станки с ЧПУ, тяжёлые, уникальные и высокоточные станки, спец. станки и автоматич. линии, в т. ч. переналаживаемые комплексные линии, комплекты высокопроизводит. оборудования с управлением от ЭВМ), созданием нового металлообр. инструмента из природных и синтетич. алмазов, минералокерамич. и др. сверхтвёрдых материалов, абразивных материалов высокой стойкости. В этих работах участвуют ЭНИМС и его филиалы (в Армянской ССР и Литовской ССР), ВНИИ, ВНИИалмаз, Укр. НИИ станков и инструментов, технологич. ин-т Оргстанкинпром, др. ин-ты и широкая сеть конструкторских бюро во мн. союзных республиках.

Между странами - членами СЭВ заключены соглашения о совместной разработке осн. научно-технич. проблем в области металлообработки: создании и усовершенствовании станков с ЧПУ, создании единого программного языка, методов испытаний станков, норм точности, унификации систем и элементов управления и т. д. При этом достигается более высокий уровень концентрации научно-исследоват. потенциала в социалистич. странах.

См. также Станкостроение, Инструментальная промышленность, Обработка металлов резанием, Металлорежущий станок, Металлорежущий инструмент, Инструмент алмазный. А. А. Пархоменко, О. А. Владимиров, Л. И. Леей, Д. Л. Юдин.

Периодич. издания: «Машиноведение» (с 1965), «Вестник машиностроения» (с 1921), «Известия АН СССР. Механика твёрдого тела» (с 1966), «Стандарты и качество»(с 1927), «Машиностроитель» (с 1931),«Приборостроение» (с 1956), «Измерительная техника» (с 1939), «Металловедение и термическая обработка металлов» (с 1955), «Сталь» (с 1941), «Литейное производство» (с 1930), «Сварочное производство» (с 1930), «Автоматическая сварка» (с 1948), «Кузнечно-штамповочное производство» (с 1959), «Станки и инструмент» (с 1930) и др. отраслевые журналы.

Металлургическая наука, техника и технология

Русские учёные внесли большой вклад в науку о металлах, в развитие техники и технологии их произ-ва. В 1763 М. В. Ломоносов опубликовал «Первые основания металлургии, или рудных дел», в к-рых рассмотрел ряд проблем, связанных с добычей руд и получением металлов. В 60-х гг. И. И. Ползунов построил первую доменную воздуходувку, приводимую в движение силой пара. В. В. Петров, открывший в 1802 явление электрической дуги, указал на возможность её применения для электроплавки и восстановления металлов из окислов. Труды П. Г. Соболевского по получению ковкой платины и изготовлению из неё изделий (1826) положили начало порошковой металлургии. П. П. Аносов разработал новые способы выплавки стали высокого качества, положил начало металлургии легированных сталей, впервые применил микроскоп для исследования структуры металла (1831). Классические работы Д. К. Чернова в области кристаллизации стального слитка, фазовых превращений в стали, строения металлов и сплавов послужили фундаментом для создания совр. металловедения и термич. обработки металлов. Наследие Чернова творчески развивали А. А. Байков, А. А. Ржешотарский, Н. С. Курнаков и др. Крупный вклад в теорию и практику доменного процесса внесли М. А. Павлов и М. К. Курако. Одну из первых в Европе мартеновских печей построил в 1870 А. А. Износков; Д. К. Чернов (1872) и К. П. Поленов (1875 - 76) предложили т. н. русское бессемерование - разновидность бессемеровского процесса, обеспечивающую переработку малокремнистых чугунов. Братья А. М. и Ю. М. Горяиновы разработали и внедрили технологию мартеновской плавки на жидком чугуне (1894). На основе науч. трудов, открытий и изобретений рус. учёных, инженеров и практиков-металлургов развивалась металлургич. пром-сть, улучшались конструкции агрегатов, совершенствовались технологич. процессы. Однако создать мощную металлургию в условиях дореволюц. России не представлялось возможным.

Окт. революция 1917 дала мощный толчок развитию производит, сил, в т. ч. металлургии. Восстановление и развитие чёрной и цветной металлургии на базе электрификации явилось одной из осн. задач плана ГОЭЛРО. В годы 1-й пятилетки (1929 - 32) было развёрнуто стр-во крупных металлургич. предприятий, а также з-дов тяжёлого машиностроения, выпускающих оборудование и машины для металлургич. пром-сти.

До 1917 в стране не существовало металлургич. н.-и. ин-тов. На ряде з-дов (Путиловском, Обуховском и др.) и на кафедрах горно-металлургич. вузов имелись небольшие н.-и. лаборатории. За годы Сов. власти созданы науч. центры - Ин-т металлургии им. А. А. Байкова АН СССР, Центр. НИИ чёрной металлургии им. И. П. Бардина (ЦНИИчер-мет), Укр. НИИ металлов (Харьков), Укр. НИИ спец. сталей, сплавов и ферросплавов (Запорожье), Ин-т чёрной металлургии (Днепропетровск), Донецкий НИИ чёрной металлургии, Н.-и. и проектный ин-т металлургии и обогащения АН Казах. ССР, Гос. н.-и. и проектный ин-т редкометаллич. пром-сти (Гиредмет), Гос. н.-и. ин-т цветных металлов (Гинцветмет), Ин-т металлургии и Ин-т физики металлов Уральского науч. центра АН СССР и мн. др. Науч. кадрами высокой квалификации располагают и металлургич. вузы страны. Работы сов. учёных в значит, мере определили и определяют научно-технич. прогресс в области металлургии. Исследованы физико-химич. основы металлургич. процессов и на этой базе разработаны способы интенсификации металлургич. произ-ва, усовершенствованы технологич. процессы и созданы новые.

Существенно расширилась металлургич. база страны. Наряду с Югом, Уралом и Центром страны металлургич. з-ды создавались в Зап. и Вост. Сибири, в Казахстане, Узбекистане, Грузии, Азербайджане и на Д. Востоке. В крупную базу по произ-ву металла превратились районы Севера и Северо-Запада. Большую роль в реконструкции и стр-ве предприятий металлургии сыграл Гос. ин-т по проектированию металлургич. заводов (Гипромез), осн. в Ленинграде в 1926. В 1930 ин-т создал проект типовой доменной печи объёмом 930-1000 м3. С 1936 по проекту Гипромеза строились уникальные по тому времени доменные печи объёмом 1300 м3, а затем 2000 м3. В нач. 70-х гг. объёмы сов. доменных печей возросли до 2700 - 3200 м3, а в 1974 на Криворожском металлургич. з-де им. В. И. Ленина вступила в строй самая мощная в мире доменная печь объёмом 5000 м3. СССР располагает крупнейшими в мире мартеновскими печами ёмкостью до 600 т и двухванными печами той же мощности, кислородными конвертерами ёмкостью 300 - 350 т, электропечами ёмкостью 100 и 200 т. На ряде заводов действуют станы горячей прокатки производительностью до 4 и более млн. т проката в год.

Научно-технич. прогресс характерен для всех стадий металлургич. произ-ва - от подготовки исходных материалов до выпуска готовой продукции. В важнейших горнорудных бассейнах построены обогатит, фабрики. Технич. прогресс в обогащении руд характеризуется улучшением применяемых технологич. схем и методов, совершенствованием оборудования, увеличением глубины обогащения, обусловленным повышенными требованиями совр. металлургии к сырым материалам, а также вовлечением в эксплуатацию всё более бедных труднообогатимых руд. Разработаны и внедрены в пром-сть технологич. схемы, обеспечивающие комплексное использование сырья, в т. ч. полиметаллич. руд. Ещё в годы довоен. пятилеток и особенно после войны получило развитие агломерац. произ-во. Построены крупнейшие в мире агломерац. ф-ки. В 60-х гг. освоено произ-во офлюсованных окатышей из тонкоизмельчённого железорудного концентрата.

За годы Сов. власти возникла и развилась коксохимич. пром-сть, освоена прогрессивная технология коксования. Коксохимич. произ-вр развивается в направлении стр-ва всё более мощных коксовых батарей с печами большой ёмкости, внедрения бездымной загрузки шихты и сухого тушения кокса, механизации и автоматизации обслуживания коксовых печей, совершенствования процессов улавливания и переработки хим. продуктов коксования, ассортимент к-рых включает (70-е гг.) св. 200 наименований. Наряду с коксовыми печами объёмом 30 м3 и высотой 5 - 6 м сооружаются печи объёмом более 40 м3 и высотой 7 м. Годовая производительность коксовой батареи из 65 таких печей превышает 1 млн. т кокса.

Индустриализация страны, быстрое развитие чёрной металлургии и др. отраслей нар. х-ва обусловили форсиров. наращивание мощностей по произ-ву огнеупоров. В дореволюц. России произ-во огнеупоров носило полукустарный характер. Многие виды огнеупорных изделий (напр., для доменных и коксовых печей) импортировались. К кон. 30-х гг. нужды страны почти полностью обеспечивались отечеств, огнеупорами. В годы Великой Отечеств, войны 1941 - 45 ок. половины предприятий огнеупорной пром-сти были разрушены. Их восстановление сопровождалось технич. перевооружением, особенно усилившимся в 60 - 70-х гг. Благодаря науч. исследованиям, проводимым учёными совм. с работниками огнеупорной пром-сти, повысилось качество изделий, увеличился их ассортимент, освоено произ-во ряда новых огнеупоров (смолосвязанных для кислородных конвертеров, плотных каолиновых лля шахт доменных печей, высокоглинозёмистых, высокоплотных динасовых, периклазо-шпинелидных, изделий для установок вакуумирования, непрерывной разливки стали и до.), расширилась сырьевая база.

Решающим звеном в интенсификации доменного произ-ва явилось применение кислорода и природного газа. Опытные плавки с использованием дутья, обогащённого кислородом, были начаты в СССР на Чернореченском хим. з-де в 30-е гг. В 1940 - 41 опыты были продолжены на доменной печи Днепропетровского з-да металлургич. оборудования. В более широких масштабах доменный процесс на кислородном дутье исследовался ка опытной печи Новотульского э-да в 1948- 53. В 1957 на з-де им. Петровского (Днепропетровск) впервые в мире был применён природный газ, что позволило значительно снизить расход кокса. Год спустя по этой технологии работало уже 12 доменных печей. В сочетании с дутьём, обогащённым кислородом, применение природного газа обеспечивает стабильность работы доменной печи и улучшение технико-экономич. показателей плавки. Уже в нач. 70-х гг. св. 80% чугуна выплавлялось в СССР с применением природного газа и ок. 60% - с использованием кислорода. Большой эффект для роста производительности доменных печей даёт повышение давления газов на колошнике и темп-ры дутья до 1200 С.

В сталеплавильном произ-ве, как и в доменном, важное средство интенсификации технологии, процесса - использование кислорода и природного газа. Первые опыты применения обогащённого кислородом дутья в мартеновской печи были проведены ещё до войны на моск, з-де «Серп и молот» и горьковском з-де «Красное Сормово». С 1948 эти исследования в более широких масштабах осуществлялись на з-дах «Серп и молот», «3агюрожсталь», «Азовсталь» и др. Дальнейшие эксперименты, выполненные ЦНИИчерметом совм. с з-дом «Запорожсталь», показали, что при обогащении дутья мартеновской печи кислородом примерно до 30% и продувке кислородом в период кипения производительность печи может быть повышена на 40 - 50% с одноврем. снижением удельного расхода топлива на 30 - 40% . К кон. 70-х гг. до 80% мартеновской стали будет выплавлено с обогащением дутья кислородом. При использовании в качестве топлива высококалорийного природного газа упрощается конструкция мартеновской печи, облегчаются регулирование и автоматизация теплового процесса. В кон. 60-х - нач. 70-х гг. на ряде заводов на базе мартеновских печей созданы вы