БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201BR>Большую роль в создании методов определения полей напряжений сыграли исследования П. Ф. Попковича, Г. В. Колосова и Н. И. Мусхелишвили, явившиеся основой решения важнейших проблем предельного состояния и механики разрушения. В частности, использование конформного отображения позволило решить ряд новых задач о концентрации напряжений около отверстий и в прессовых соединениях, а также плоских и объёмных задач при расчёте элементов машин.

Благодаря работам Н. С. Стрелецкого, А. А. Гвоздева и др. (30-е гг.), С. Д. Пономарёва (50-60-е гг.) и др. широкое распространение получил метод расчёта прочности по предельным нагрузкам на основе строит, механики с учётом возможных полей скоростей и допустимых полей напряжений. В дальнейшем важный вклад в исследование предельного состояния применительно к задачам прочности внесли В. В. Соколовский, А. А. Ильюшин (40-е гг.), Ю. Н. Работнов (50-е гг.), Л. М. Качанов, Н. Н. Малинин (50-60-е гг.) и др. В частности, исследования Работнова оказали большое влияние на дальнейшее развитие прикладных методов расчёта напряжённых состояний и прочности при неупругих деформациях. В 50-60-е гг. широкое применение получили методы исследования полей деформаций и напряжений (Н. И. Пригоровский и др.), тензометрии (М. Л. Дайчик, Г. X. Хуршудов) и др. Усовершенствование метода конечных разностей и развитие метода конечных элементов позволили разработать схему решения аналогичных задач не только в упругой, но и в пластич. области, в т. ч. при ползучести (Д. В. Вайнберг, А. Г. Угодчиков и др.). Реализация расчётов по этим схемам особенно эффективна с применением ЭВМ.

Выполнены значит, работы по механич. закономерностям хрупкого разрушения (А. Ф. Иоффе, 20-е гг.; Н. Н. Давиденков и др., 30-е гг.; Я. Б. Фридман, Б. А. Дроздовский, 50-60-е гг., и др.).

В области усталостной прочности были проведены обширные экспериментальные работы и созданы практич. способы расчёта на прочность при циклически изменяющихся напряжениях. Важное значение в этой области имели построение стохастич. моделей процесса усталости (Н. Н. Афанасьев, 40-е гг., В. В. Болотин и др., 60-е гг.), разработка методов расчёта на прочность (С. В. Серенсен, В. П. Когаев и др., 50-60-е гг.) и изучение проблемы малоциклового разрушения (в 40-е гг.- Н. И. Марин, в последующие годы - Серенсен, В. В. Новожилов и др.). Для проверки циклич. деформирования и критериев разрушения разработаны экспериментальные методы исследования полей деформаций с помощью сеток (Н. А. Махутов), оптически активных покрытий (Р. М. Шнейдерович и В. В. Ларионов), муара (Шнейдерович и О. А. Левин). Уточнены критерии усталостного разрушения в связи с типом напряжённого состояния. Возможность значит, увеличения прочности в местах концентрации напряжений поверхностным наклёпом и термич. обработкой показана в 40-50-х гг. Н. П. Щаповым, И. В. Кудрявцевым и др.

Систематич. исследования проблем термопрочности проводились И. А. Одингом (40-60-е гг.), Серенсеном (с 50-х гг.), Г. С. Писаренко (50-60-е гг.) и их учениками. Они были посвящены выяснению сложных изменений механич. и термич. прочности в широком диапазоне режимов нагружений и нагрева. Прочностью при неизогермич. нагружений, особенно важной для элементов конструкций, в к-рых возникают значит, температурные напряжения, занимались в 50-60-е гг. Ю. И. Лихачёв, Ю. Ф. Баландин и др.

Увеличение скоростей машин, интенсификация технологич. процессов, а также успешное применение импульсных методов в технологии формоизменения и упрочнения обусловили разработку волновых упругопластич. задач, решение которых базируется на основополагающих работах Л. А. Галина, X. А. Рахматулина и др.

В 70-х гг. наука о прочности развивается в след, направлениях: разработка вопросов механики деформирования и разрушения как основы расчётов на прочность при экстремальных условиях нагрева и нагружения, исследование кинетики деформированных состояний и разрушения для определения прочности и долговечности в условиях стационарной и стохастич. нагруженности, анализ истории нагружения и накопления повреждений для оценки остаточной прочности и ресурса.

Ведущие ин-ты: Гос. НИИ машиноведения, Ин-т проблем механики АН СССР, Ин-т проблем прочности АН УССР, Ин-т электросварки АН УССР. Координацию работ осуществляет Научный совет АН СССР по проблемам прочности и пластичности.

Проблемы точности и износостойкости. Технич. прогресс в машиностроении тесно связан с решением проблем повышения точности изготовления деталей машин и обеспечения их износостойкости. Отдельные исследования по этим проблемам проводились ещё в дореволюц. России. Напр., известны работы Н. П. Петрова, заложившего основы гидродинамич. теории трения. Планомерно исследования в области точности стали осуществляться лишь после Октябрьской революции 1917. Декретом СНК (1918) была узаконена метрич. система мер, а затем приняты гос. эталоны и проведены др. мероприятия в области метрологии. В 20-30-х гг. созданы стандарты на допуски для типовых деталей машин (А. Д. Гатцук, М. А. Саверин). Важную роль в разработке гос. стандартов на допуски изделий и калибров для их контроля сыграло организованное в 1935 Н.-и. бюро взаимозаменяемости под рук. И. Е. Городецкого; оно стало ведущим в области создания средств измерения и контрольных автоматов. В 30-е гг. развернулись работы по взаимозаменяемости, стандартизации и технике измерений в н.-и. opr-циях различных отраслей пром-сти. В 30-40-х гг. большое значение имели теоретические исследования Бруевича (точность механизмов с учётом ошибки размеров и расположения звеньев), Б. С. Балакшина (теория размерных цепей), Н. А. Бородачёва (основы расчёта допусков кинематич. цепей), Н. А. Калашникова (точность зубчатых колёс); при этом вопросы точности стали изучаться в связи с технологич. процессами изготовления изделий (работы А. П. Соколовского, В. М. Кована и др.). Итогом этих работ была общая теория точности машин и приборов (40-50-е гг., Гос. НИИ машиноведения), выводы к-рой в 60- 70-е гг. применялись при проектировании машин, приборов и технологич. процессов, а также в автоматизации контроля в пром-сти и управлении технологич. процессами.

В 70-х гг. внимание учёных сосредоточено на оптимизации точностных задач с помощью ЭВМ при конструировании, а также на комплексном изучении проблем точности и надёжности. Ведущими организациями в области взаимозаменяемости и точности являются Бюро взаимозаменяемости в металлообрабатывающей пром-сти, Гос. НИИ машиноведения и Центр. НИИ технологии машиностроения. Значит, работы ведутся также в Киевском, Рижском, Каунасском политехнич. ин-тах, Вильнюсском филиале Эксперимент. НИИ металлорежущих станков и др. Сов. учёные активно участвуют в работе Междунар. орг-ции по стандартизации (ISO), междунар. конференциях по измерит, технике и разработке единой системы допусков и посадок, унифицированных стандартов стран - членов СЭВ.

Теория трения и износа твёрдых тел наиболее интенсивно развивалась с 30-х гг. в связи с ростом машиностроения. Потребовались износостойкие фрикционные материалы и новые виды смазок. В 30-40-х гг. А. К. Зайцевым и Д. В. Конвисаровым систематизированы знания о трении и износе в машинах и сделаны попытки создания единого учения о трении и износе. В дальнейшем исследованы природа поверхностных сил (Б. В. Дерягин), механизм разрушения поверхностных слоев (П. А. Ребиндер), подшипниковые сплавы и абразивный износ (М. М. Хрущов). Предложенные в 50-х гг. молекулярно-механич. теория трения и усталостная теория износа (И. В. Крагельский) являются ныне базисом для инж. расчёта машин на износ, работающих в условиях сухого и граничного трения, для подбора и создания материалов пар трения. Значит, вклад в теорию трения и износа в 40-50-х гг. внесли Б. Д. Грозин и Б. И. Костецкий (износ металлов), А. П. Семёнов (схватывание металлов), С. В. Пинегин (сопротивление качению), А. К. Дьячков и М. В. Коровчинский (гидродинакич. смазка), А.И. Петрусевич (контактно-гидродинамич. смазка), Г. В. Виноградов и Р. М. Матвеевский (эффективность действия смазочных материалов при тяжёлых режимах трения), А. В. Чичинадзе (физич. моделирование фрикционного контакта) и др. В нач. 60-х гг. мощным импульсом развития науки явилась необходимость создания новых материалов и узлов трения для машин разного назначения. Были созданы самосмазывающиеся материалы на полимерной основе (В. В. Коршак, В. А. Белый и др.), а также металлофторопластовые материалы (Гос. НИИ машиноведения). В 60-70-х гг. разработаны мероприятия по борьбе с задиром поверхностей трения (Н. Л. Голего), исследовано трение полимеров (А. К. Погосян), проводилось дальнейшее изучение процесса трения скольжения (Г. А. Свирский).

В 70-х гг. создаются смазки и присадки к ним, препятствующие задиру пар трения и обеспечивающие автокомпенсацию износа (Всесоюзный н.-и. и проектный ин-т нефтеперерабатывающей и нефтехимич. пром-сти, Ин-т нефтехимич. синтеза им. А. В. Топчиева), полимерные материалы для узлов трения (Ин-т элементоорганич. соединений АН СССР, Ин-т металлополимерных систем АН БССР и др.), развиваются теоретич. основы контактного взаимодействия твёрдых тел с учётом среды (Ин-т проблем механики АН СССР), применяются к разным деталям расчётные методы прогнозирования износа (Гос. НИИ машиноведения), создаются стандартные методы оценки фрикционных материалов (Всесоюзный НИИ по нормализации в машиностроении). Важные работы по трению и износу выполняются по договорам между СССР и Великобританией, Францией, ГДР. СССР - член Междунар. совета по трибонике «Eurotrib» [с 1973 (год основания) вице-президент И. В. Крагельский].

Материаловедение. Основоположниками совр. металловедения явились П. П. Аносов и Д. К. Чернов. В предреволюц. годы на базе вузов и нек-рых заводских лабораторий сложились центры металловедч. науки. Особенно интенсивно она развивалась после Окт. революции 1917; была создана сеть НИИ, заводских лабораторий и высших технич. уч. заведений, выросли крупные школы металловедения.

В 20-30-х гг. Н. С. Курнаков и его школа разработали учение о физико-химич. анализе сплавов и установили важные закономерности зависимости свойств от состава. Исследования в области теории металлургич. процессов и металловедения, послужившие основанием для разработки высококачеств. сталей, были проведены школой А. А. Байкова. Изучение сплавов на основе цветных металлов, разработка подшипниковых сплавов были содержанием работ школы А. М. Бочвара. Труды С. С. Штейнберга, продолженные его учениками (В. Д. Садовский и др.), посвящены кинетике превращений аустенита. Новые типы сталей и различные технологич. процессы термич. обработки разработаны Н. А. Минкевичем и Н. Т. Гудцовым. А. А. Бочвар установил механизм эвтектич. кристаллизации, открыл явление сверхпластичности, используемое при разработке новых технологич. процессов металлообработки, заложил основы теории литейных свойств сплавов. Основоположником исследований по применению токов высокой частоты в процессах термич. обработки был В. П. Вологдин (30-е гг.).

Важную роль в развитии металловедения начиная с 20-х гг. сыграло применение методов рентгеноструктурного анализа, позволившее определить кристаллич. структуру различных фаз, её изменения при фазовых превращениях, термич. обработке и деформации. В этой области важнейшее значение имели работы С. Т. Конобеевского, Г. В. Курдюмова, Н. В. Агеева и др. Курдюмов, в частности, исследовал кристаллич. структуру мартенсита и изменения структуры закалённой стали при отпуске, открыл явление термоупругого равновесия и «упругие» кристаллы мартенсита (что является теоретич. основой разработки сплавов с т. н. памятью формы).

В послевоенные годы требования к металлич. материалам резко возросли и стали более разнообразными в связи с необходимостью достижения высоких эксплуатац. параметров, надёжности и долговечности в широком диапазоне темп-р, нагрузок, скоростей нагружения, при воздействии различных агрессивных сред и физич. полей. Существенными явились и запросы техники к экономичности материалов, их технологичности (свариваемость, способность к формоизменению, малые изменения размеров при термообработке, простота термич. обработки). Появилась необходимость в получении материалов со сложным комплексом свойств (высокая прочность с достаточным сопротивлением хрупкому разрушению и хладноломкости; немагнитность; спец. физич. свойства). Всё это обусловило быстрое развитие теоретич. металловедения, изыскание новых метал-лич. материалов и методов их производства.

В 60-70-х гг. решены задачи обеспечения потребностей нар. х-ва в металлич. материалах. Разработаны новые стали: конструкционные с повыш. прочностью и пластичностью, сопротивлением циклич. нагрузкам, коррозии под напряжением; низколегированные строительные с хорошей свариваемостью и повышенными механич. характеристиками для мостостроения, газо- и нефтепроводов, судостроения, пром. и гражд. стр-ва и, в частности, для использования в условиях Севера; жаропрочные для реактивной авиации и энергетики; коррозионно-стойкие для химич. пром-сти и атомной энергетики; экономичные быстрорежущие и инструментальные повыш. производительности; электротехнические с малыми удельными потерями, в т. ч. холоднокатаные и текстурованные; нестареющие для глубокой вытяжки, криогенные и др.

Значит, развитие получило произ-во лёгких сплавов повышенной прочности (алюминиевых, магниевых, титановых, бериллиевых), особенно для конструкций с высокими требованиями к весовым показателям (А. Ф. Белов, А. Т. Туманов и др.), а также произ-во сплавов со спец. физ. свойствами (магнитно-мягкие, магнитно-твёрдые, с высоким электросопротивлением, с заданным коэфф. расширения, с высокими упругими свойствами, сверхпроводящие, магнитострикционные, термомагнитные и др.) для электронной, электровакуумной техники и приборостроения (А. С. Займовский и др.). Важное значение имели проведённые в 60-70-х гг. исследования процесса термомеханич. обработки металлов.

Достижения в области физики твёрдого тела, физ. химии и металловедения позволили создать принципиально новый класс материалов - т. н. композиционные материалы. Используя полезные свойства составляющих композиций (металлов, сплавов, керамики, карбидов, боридов, полимеров и др.), можно получить композиц. материалы с заданным комплексом спец. свойств: высокопрочные, жаропрочные, высокомодульные, радиопоглощающие, радиопрозрачные, диэлектрич., магнитные и др.

Обширный комплекс теоретич. и практич. работ проведён в СССР по созданию и применению в машиностроении пластмасс и др. синтетич. материалов (резин, химич. волокон, клеёв, лаков, красок). Созданы высокоэффективные пластмассы, обладающие ценными свойствами (физико-механич., химич., диэлектрич., оптич. и др.). На мн. маш.-строит, з-дах организованы базовые цехи по произ-ву пластмассовых деталей и узлов машин. Пластмассы заменяют тяжёлые цветные металлы, нержавеющую сталь, ценные сорта древесины, используются для улучшения качества машин и оборудования, снижения их массы и стоимости, повышения долговечности, надёжности, производительности. А. А. Пархоменко, О. А. Владимиров, А. И. Петрусевич, А. Т. Григорян, Р. М. Матвеевский, Р. И. Энтин,

Технология производства машин.

Литьё. В дореволюционной России литьё осуществлялось небольшим числом заводов и цехов с примитивным оборудованием. Ассортимент продукции был крайне ограничен: гл. обр. отливки для ремонтных нужд, изложницы, прокатные валки, вооружение и боеприпасы. В 19 в. появились работы П. П. Аносова, Н. В. Калакуцкого и А. С. Лаврова по процессам кристаллизации отливок, возникновению ликвации и внутр. напряжений в них. Переворот в области чугунного и стального литья был произведён открытием критич. точек металлов в кон. 19 в. Быстро развивалось литейное произ-во после Октябрьской революции 1917. Теоретич. базой при проектировании, механизации и специализации литейного произ-ва были работы Н. Н. Рубцова, Л. И. Фанталова, Н. П. и П. Н. Аксёновых. Основы учения о формовочных материалах созданы П. П. Бергом в 30-х гг. В 30-50-х гг. Н. Г. Гиршович, Б. С. Мильман, Д. П. Иванов и др. разработали процессы получения высококачеств. чугунных, а в 30-60-х гг. Ю. А. Нехендзи, А. А. Рыжиков и др.- стальных отливок. В 30-40-х гг. А. А. Бочвар и А. Г. Спасский внедрили в произ-во процесс изготовления высококачеств. отливок из лёгких сплавов, кристаллизующихся в условиях повыш. давления. Исследования по теории и практике плавки чугуна в вагранках были выполнены в 40-50-х гг. Л. М. Мариенбахом, Б. А. Носковым, Л. И. Леви и др. В 50- 60-х гг. Б. Б. Гуляевым, Г. Ф. Баландиным и др. изучены и обоснованы мн. процессы кристаллизации и деформирования отливок.

В 70-х гг. получили пром. применение процессы плавки в усовершенствованных вагранках и электрич. печах. Для улучшения свойств отливок осуществляется легирование и модифицирование сплавов. Высокая точность отливок достигается применением литья в кокиль, литья по выплавляемым моделям, использованием разовых литейных форм, изготовленных на автоматах под высоким давлением или с применением специальных, твердеющих в технологич. оснастке формовочных и стержневых смесей. Используются вакуумная плавка, различные виды рафинирования расплавов и др., а также полуавтоматич. и автоматич. оборудование, облегчающее труд рабочих и обеспечивающее охрану окружающей среды от воздействия производств, отходов. Автоматизируется управление технологич. процессами и производством в целом.

Ведущие ин-ты по разработке литейных технологии и машиностроения: Всесоюзный НИИ литейного машиностроения, литейной технологии и автоматизации литейного произ-ва и Ин-т проблем литья АН УССР.

Сов. учёные являются членами Междунар. ассоциации литейщиков, участвуют в междунар. конгрессах (40-й конгресс проходил в Москве в 1973). См. также Литейное производство.

Обработка металлов давлением (ковка, штамповка, прессование). До 1917 кузнечные и прессовые цехи выпускали огранич. номенклатуру деталей. Уже в годы 1-й пятилетки (1929-32) куз-нечно-штамповочное и прессовое произ-во получило заметное развитие, особенно в новых отраслях машиностроения (энер-гетич., тракторном, автомоб., трансп.). Кузнечные цехи начали производить поковки и штамповки из стали мн. марок, алюминиевых и магниевых сплавов и др. Были созданы первые специализир. прессовые цехи лёгких сплавов. Технология ковки и штамповки усовершенствовалась в 30-40-е гг.: расширилась номенклатура поковок, повысилась точность штамповки, форма поковок приблизилась к готовым деталям. Начала применяться горячая штамповка в многоручьевых штампах. Увеличилась толщина листового металла для ковки и горячей штамповки крупных пустотелых деталей - барабанов, котлов и др. Рост выпуска тонкого холоднокатаного листа повлиял на совершенствование холодной листовой штамповки крупных автомоб., судовых, вагонных и др. деталей. Увеличение размеров кованых деталей привело к повышению верх, предела массы кузнечных слитков до 200-250 т. В 50-е гг. положит, результаты дало применение электрошлаковой сварки при изготовлении ковано-сварных крупногабаритных изделий.

Развитие атомной, авиац. и ракетной техники, приборостроения, повышение рабочих параметров машин (усилий, напряжений, скоростей, давлений, темп-р) потребовало разработки новых технологич. процессов для высокопрочных и жаропрочных сплавов, новых термомеха-нич. режимов обработки тугоплавких металлов (Mo, Nb, W, Cr и др.). Значит, развитие получил процесс прессования (выдавливания) металлов. Было освоено прессование профилей и труб перем. сечения, пустотелых профилей и панелей из алюм. сплавов, труб и профилей (в т. ч. перем. сечения и пустотелых) из титановых сплавов, прутков, профилей и труб из высокопрочных сталей, а также из жаропрочных сплавов на никелевой основе и тугоплавких сплавов. Помимо внедрения гидропрессовой техники, в т. ч. мощных штамповочных прессов с усилием 30-75 тыс. тс и горизонтальных гидравлич. прессов для прессования металлов с усилием 12-20 тыс. тс, в 60-70-е гг. распространились принципиально новые технологич. процессы: импульсное и взрывное прессование, беспрессовое изготовление деталей в холодном состоянии из жаропрочных сталей, титана, алюм. сплавов и др. Созданы установки со взрывом в воде, в вакууме, электроразрядные установки в воде, взрывные со смесью газов, импульсные установки с сильными магнитными полями. Разработано гидростатич. прессование металлов, а также высокотемпературное гидростатич. формование порошков труднодеформируемых металлов и сплавов (газостаты). Создано уникальное прессовое оборудование для получения синтетич. алмазов. Осуществляется комплексная механизация и автоматизация технологич. процессов ковки и штамповки (автоматич. установки по выдавливанию сплошных и трубчатых деталей, автоматич. линии по высадке болтов, заклёпок, по штамповке колец шарикоподшипников, вагонных колёс, звеньев гусениц и т. д.).

В разработке теоретич. и технологич. проблем ковки, штамповки, прессования участвовали С. И. Губкин, И. М. Павлов, Е. П. Унксов, А. И. Целиков, И. А. Перлин, Б. В. Розанов, А. И. Зимин, П. С. Истомин и др. Исследования этих процессов ведутся в Центр. НИИ технологии машиностроения, Всесоюзном н.-и. и проектно-конструкторском ин-те ме-таллургич. машиностроения, Всесоюзном ин-те лёгких сплавов и др.

Сварка. До конца 19 в. в России использовали только два способа сварки металлов - литейный и кузнечный. Основой принципиально новых методов соединения металлов явилось открытие в 1802 В. В. Петровым дугового разряда. В 1882 Н. Н. Бенардос и в 1890 Н. Г. Славянов предложили первые практически пригодные способы сварки с использованием электрической дуги. К 1911 распространилась также газовая сварка.

Науч. исследования в области сварки развернулись после Окт. социалистич. революции. В 1924 выпущены первые сварочные машины, спроектированные В. П. Никитиным. В 1929 для концентрации н.-и. и конструкторских работ по сварке и резке металлов был создан Автогенный к-т при ВСНХ, а в 1931 - Всесоюзный автогенный трест. В годы 1-й пятилетки (1929-32) электросварку применяли не только для ремонта оборудования, но и для произ-ва новых конструкций в строит, пром-сти, трансп. и энергетич. машиностроении, судостроении и др. отраслях. Мн. заводы использовали её в качестве осн. технологич. процесса при произ-ве котлов, вагонных конструкций, ж.-д. цистерн, цельносварных судов, трубопроводов и т. п. Н.-и. работы велись в Центр, ин-те ж.-д. транспорта, Центр. НИИ технологии и машиностроения (ЦНИИТМАШ), НИИсудпроме, заводских лабораториях. Начались исследования по изучению распространения тепла при сварке (Н. Н. Рыкалин), прочности сварных конструкций и механизма образования напряжений от сварки (В. П. Вологдин, Г. А. Николаев). В 30-е гг. в НИИ и на заводах (особенно в Киеве под рук. Е. О. Патона) начались работы, в результате к-рых был создан способ автоматич. сварки открытой дугой, а затем (нач. 40-х гг.) способ автоматич. сварки под флюсом с использованием оригинальной отечеств, аппаратуры. Эти методы позволили ликвидировать тяжёлый ручной труд, перевести сварку на индустр. основу.

В период Великой Отечеств, войны 1941-45 сварочная техника использовалась в произ-ве танков, снарядов к ракетным установкам БМ-13 («Катюша») и др. вооружения. При изготовлении сварных бронекорпусов применялось оборудование для автоматич. сварки под флюсом с постоянной скоростью подачи электродной проволоки (по принципу саморег