БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201 10" протонов/(сл2·сек), а их пространственная концентрация - от неск. частиц до неск. десятков частиц в 1 см3. При помощи межпланетных кос-мич. станций установлено, что вплоть до орбиты Юпитера плотность потока частиц С. в. изменяется по закону r-2, где r - расстояние от Солнца. Энергия, к-рую уносят в межпланетное пространство частицы С. в. в 1 сек, оценивается в 1027 -1029 эрг (энергия электромагнитного излучения Солнца ~4 *10 33 эрг/сек). Солнце теряет с С. в. в течение года массу, равную ~2*10-14 массы Солнца. С. в. уносит с собой петли силовых линий солнечного магнитного поля (т. к. силовые линии как бы "вморожены" в истекающую плазму солнечной короны; см. Магнитная гидродинамика). Сочетание вращения Солнца с радиальным движением частиц С. в. придаёт силовым линиям форму спиралей. На уровне орбиты Земли напряжённость магнитного поля С. в. меняется в пределах от 2,5*10-6 до 4 *10-4 э. Крупномасштабная структура этого поля в плоскости эклиптики имеет вид секторов, в к-рых поле направлено от Солнца или к нему (рис. 1). В период невысокой активности Солнца (1963-64) наблюдались 4 сектора, сохранявшиеся в течение 1,5 лет. При росте активности структура поля стала более динамичной, увеличилось и число секторов.

Рис. 1. Секторная структура межпланетного магнитного поля, выявленная американским спутником "IMP-1".

Магнитное поле, уносимое С. в., частично "выметает" галактич. космические лучи из околосолнечного пространства, что приводит к изменению их интенсивности на Земле. Изучение вариаций космич. лучей позволяет исследовать С. в. на больших расстояниях от Земли и, что особенно важно, вне плоскости эклиптики. О многих свойствах С. в. вдали от Солнца можно будет, по-видимому, узнать также из исследования взаимодействия плазмы С. в. с плазмой комет - своеобразных космич. зондов. Размер полости, занятой С. в., точно не известен (аппаратурой космич. станций С. в. прослежен пока до орбиты Юпитера). У границ этой полости динамич. давление С. в. должно уравновешиваться давлением межзвёздного газа, галактич. магнитного поля и галактич. космич. лучей. Столкновение сверхзвукового потока солнечной плазмы с геомагнитным полем порождает стационарную ударную волну перед земной магнитосферой (рис. 2).

Рис. 2. Локализация геомагнитного поля солнечным ветром: / - силовые линии магнитного поля Солнца; 2 - ударная волна; 3 - магнитосфера Земли; 4 - граница магнитосферы; 5 - орбита Земли; 6 - траектория частицы.

С. в. как бы обтекает магнитосферу, ограничивая её протяжённость в пространстве (см. Земля). Потоком частиц С. в. геомагнитное поле сжато с солнечной стороны (здесь граница магнитосферы проходит на расстоянии ~ 10 RQ-земных радиусов) и вытянуто в антисолнечном направлении на десятки R© (т. н. "хвост" магнитосферы). В слое между фронтом волны и магнитосферой квазирегулярного межпланетного магнитного поля уже нет, частицы движутся по сложным траекториям и часть из них может быть захвачена в радиационные пояса Земли. Изменения интенсивности С. в. являются осн. причиной возмущений геомагнитного поля (см. Вариации 'магнитные), магнитных бурь, полярных сияний, нагрева верхней атмосферы Земли, а также ряда биофизич. и биохимич. явлений (см. Солнечно-земные связи). Солнце не выделяется чем-либо особенным в мире звёзд, поэтому естественно считать, что истечение вещества, подобное С. в., существует и у др. звёзд. Такой "звёздный ветер", более мощный, чем у Солнца, был открыт, напр., у горячих звёзд с темп-рой поверхности ~30-50 тыс. К. Термин "С. в." был предложен амер. физиком E. Паркером (1958), разработавшим основы гидродинамич. теории С. в.

Лит.: Паркер E., Динамические процессы в межпланетной среде, пер. с англ., M., 1965; Солнечный ветер, пер. с англ., M., 1968; Хундхаузен А., Расширение короны и солнечный ветер, пер. с англ., M., 1976. M. А.Лившиц, С.Б.Пикелънер.

СОЛНЕЧНЫЙ ВОДОНАГРЕВАТЕЛЬ, гелиоустановка, предназначенная для нагрева воды (до 50-60 0C) в банях, прачечных и т. п. Чаще всего С. в. строят по схеме без концентрации солнечной энергии. Такой С. в. состоит из термоизолированного и застеклённого сверху ящика (см. "Горячий ящик"), внутри к-рого устанавливают плоский или трубчатый котёл с нагреваемой водой. Солнечные лучи проходят сквозь стекло и, попадая на зачернённую поверхность котла, нагревают воду. По мере использования горячей воды котёл пополняется холодной. Различают С. в. с естественной и принудительной (с помощью насосов) циркуляцией воды. Обычно С. в. делают неподвижными, ориентируют на Юг и наклоняют под нек-рым углом к горизонту. В ряде случаев С. в. оснащают простейшими приспособлениями для изменения угла наклона в зависимости от времени года. Выпускаются серийно во мн. странах.


СОЛНЕЧНЫЙ ДАТЧИК, прибор, обычно оптико-электронного типа, определяющий углы отклонения одной из осей к.-л. прибора или летат. аппарата от направления на Солнце. Применяется при ориентировании астрономнч. приборов, при решении навигац. задач в авиации и космонавтике, служит позиционным датчиком в нек-рых системах ориентации. Конструкция С. д. определяется конкретными требованиями к его точности, надёжности, быстродействию, величине сферы обзора и т. д.


СОЛНЕЧНЫЙ КАЛЕНДАРЬ, календарь, в основе к-рого лежит тропич. год.


СОЛНЕЧНЫЙ МАГНЕТИЗМ, совокупность явлений, связанных с существованием на Солнце магнитного поля. Различают магнитные поля солнечных пятен, активных областей вне пятен и т. н. общее магнитное поле Солнца. Впервые магнитное поле на Солнце было открыто амер. астрономом Дж. Хейлом в 1908 по расщеплению линий поглощения (см. Зеемана эффект) в спектрах пятен. Для измерения сильного магнитного поля обычно применяется анализатор круговой поляризации, позволяющий наблюдать зесмановские компоненты линии раздельно. При слабом магнитном поле наиболее точны измерения с помощью магнитографа солнечного. С. м., возможно, является причиной нагрева верхней солнечной атмосферы, ускорения частиц и их выхода в межпланетное пространство, играет определяющую роль во многих явлениях солнечной активности, таких, как солнечные вспышки и др. Слабые магнитные поля связаны с участками повышенной яркости, где происходит нагрев газа. Однако локальное усиление магнитного поля выше 1400 э приводит к охлаждению газа и образованию солнечных пятен. Пятнам присущи наиболее сильные магнитные поля (до 5000 э), подчиняющиеся определённым законам изменения полярности с циклом солнечной активности (продолжительность "магнитного" цикла составляет два 11-летних цикла солнечной активности, т. е. ок. 22 лет). Взаимодействие магнитных полей в группах пятен, по-видимому, вызывает солнечные вспышки. Вне активных областей наблюдаются слабые, т. н. фоновые магнитные поля; вместе с активными областями они определяют в основном структуру солнечной короны и межпланетной среды.

На гелиоцснтрич. широтах более 55° измеряется т. н. общее магнитное поле, сходное с полем диполя. Для него характерны временные колебания, и в отд. годы распределение общего магнитного поля по широте сильно отличается от дипольного. Установлено, что в эпохи максимума солнечной активности происходит изменение знака магнитного поля на полюсах. Сов. астроном А. Б. Северный изучил тонкую структуру и статистич. характер общего магнитного поля, к-рое сконцентрировано в отд. структурных элементах, имеющих разные размеры и магнитное поле обеих полярностей с напряжённостью примерно до 20 э; напряжённость усреднённого общего магнитного поля составляет 1-5 э.

Суммарное магнитное поле всего Солнца как звезды изменяется с периодом ок. 27-28 дней и амплитудой ок. 1 э. Оно имеет обычно 2 или 4 сектора чередующихся полярностей, совпадающих с секторной структурой межпланетного магнитного поля. Природа С. м. до конца ешё не исследована.

Лит.: Северный А. Б., Магнитные поля Солнца н звезд, "Успехи физических наук", 1966, т. 88, в. 1; Solar magnetic fields, ed. R. Howard, Dordrecht, 1971. В. Л. Котов.

СОЛНЕЧНЫЙ ОКУЛЯР, окуляр телескопа, предназначенного для визуальных наблюдений Солнца. Служит для ослабления яркости изображения Солнца с наименьшей потерей разрешающей способности телескопа (при диафрагмированин для этой цели объектива пли зеркала, дающего изображение, разрешающая сила телескопа уменьшается).

Солнечный окуляр; а - общин вид; б - схема.

Для ослабления света в С. о. применяются нейтральные фильтры, фотометрии, клинья, поляризац. устройства и др. Наиболее часто употребляется окуляр, в к-ром свет, отражаясь от плоского зеркала (или ктина) M (см. рис.), проходит через двухкомпонентную призму (призма П - стеклянная, кроновая, П2 - жидкостная, с вазелиновым маслом); т. к. показатели преломления веществ обеих призм очень близки по величине, от контактной грани отражается лишь незначительная часть света. После этого свет попадает в обычный окуляр О.


СОЛНЕЧНЫЙ ОПРЕСНИТЕЛЬ, устройство для опреснения воды, в к-ром источником энергии служит солнечное излучение. Распространение получили гл. обр. С. о. типа "горячий ящик", к-рые отличаются простой конструкцией, требуют сравнительно неботынпх капитальных вложений и не нуждаются в квалифицированном уходе. Такой опреснитель (рис.) выполнен в виде тсплонзолпрованного и зачернённого изнутри сосуда, дно к-рого заливается соленой водой, подлежащей опреснению. Верх, часть С. о. покрыта светопрозрачным материалом (стеклом, полимерной плёнкой, оргстсклом). Солнечные лучи, проходя через прозрачный материал, нагревают воду, вызывая её испарение. Водяные пары, соприкасаясь с прозрачным покрытием, имеющим темп-ру, близкую к темп-ре окружающего воздуха, конденсируются на её внутр. поверхности, и пресная вода стекает в сборник.

Схема солнечного опреснителя типа "горячий ящик": 1 - сосуд с солёной водой; 2 - паровоздушная смесь; 3 - прозрачная крышка; 4 - конденсат; 5 - теплопзолирующая стенка ящика; стрелками обозначены солнечные лучи.

С. о. обычно ориентируют на Юг. Угол наклона светопроницаемой поверхности С. о. выбирается оптимальным с учётом высоты Солнца над горизонтом и обеспечения стекания конденсата. Производительность С. о. типа "горячий ящик" определяется, в основном интенсивностью солнечной радиации и степенью герметизации установки и составляет 3-5 л 1м2*сут.

С. о. нашли применение в местностях, где ощущается дефицит пресной воды при достаточных запасах солёной (напр., морской). В мировой практике имеется опыт успешного использования С. о. надувной конструкции экипажами самолётов и мор. судов, терпящих бедствие в открытом море.

Лит.: Б р д л и к П. M., Испытание и расчёт солнечных опреснительных установок, в сб.: Использование солнечной энергии, сб. 1, M., 1957; Б а и р а м о в Р., Сравнительные испытания солнечных опреснителей парникового типа, "Изв. АН Туркм. CCP. Сер. физико-технических, химических и геологических наук", 1964, № 1; Современные методы опреснения воды, Аш., 1967.

П. M. Брдлик.


СОЛНЕЧНЫЙ ПАРУС, один из возможных движителей космического летательного аппарата (КЛА); представляет собой устанавливаемую на КЛА и развёртываемую в полёте непрозрачную плёнку (напр., металлизированная полимерная) большой площади, способную сообщить КЛА значит, скорость за достаточно большое время благодаря действию на неё солнечного излучения (см. Давление света). Ограничением в применении С. п. является то, что КЛА с С. п. может двигаться только в одном направлении (от Солнца), а сила солнечного давления мала и убывает пропорционально квадрату расстояния от Солнца. Может найти практич. применение в межпланетных полётах.


СОЛНЕЧНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ,реактивный двигатель, использующий для нагрева рабочего тела (напр., водорода) солнечную энергию. Находится в стадии экспериментальной разработки (1976).


СОЛНЕЧНЫЙ ТЕЛЕСКОП,телескоп для наблюдений Солнца. С. т. с объективами небольших диаметров и небольших фокусных расстояний обычно имеют параллактич. монтировку. К таким С. т. относятся коронографы, предназначенные для наблюдения солнечной короны вне затмений, фотосферные телескопы и хромосферные телескопы, снабжённые обычно интерференционно-поляризационными фильтрами, позволяющими наблюдать Солнце в свете водородной линии H1,. Крупные С. т. снабжаются системой движущихся плоских зеркал (целостатом) для направления солнечного света в неподвижный телескоп, а также различными приборами для исследования Солнца - фотографич. камерами, фотоэлектрическими приёмниками света, спектрографами, магнитографами солнечными и др. В зависимости от направления оптической оси различают горизонтальные и башенные С. т. (см. рис.). Строятся С. т. также и с наклонной осью.

Башенный солнечный телескоп Крымской астрофизической обсерватории АН СССР.

Лит.: Солнечная система, под ред. Дж. Койпера, пер. с англ., т. 1, M., 1957.

СОЛНЕЧНЫЙ ТЕРМОЭЛЕКТРОГЕHEPATOP,солнечная энергетическая установка для прямого преобразования солнечной энергии в электрическую, включающая систему концентрации энергии солнечной радиации, термоэлектрический генератор, систему слежения за видимым движением Солнца и опорную механич. часть. Кпд С. т. зависит гл. обр. от уровня рабочих темп-р горячих и холодных спаев и свойств полупроводниковых материалов термоэлементов. Увеличение плотности теплового потока, проходящего через каждый термоэлемент, осуществляют гелиоконцентраторами либо посредством лучевоспринимающих теплопроводных пластин, имеющих площадь, большую, чем поперечное сечение термоэлемента в направлении излучения. Соответственно различают С. т. с оптич. концентрацией и панельные, с применением селективных покрытий. С. т. перспективны для применения в качестве источников энергопитания автономных потребителей малой мощности (до неск. сотен вт), например установок для подъёма грунтовых вод в с. х-ве, устройств навигации и связи, космич. аппаратов, работающих в полях интенсивной космич. радиации, и т. д.

Лит.: Поздняков Б. С., Коптело в E. А., Термоэлектрическая энергетика, M., 1974. ТО. H. Малевский.

СОЛНЕЧНЫЙ УДАР, остро развивающееся болезненное состояние человека и животных; обусловлено нарушением мозговых функций в результате непосредств. действия солнечных лучей на голову. У человека возникающие при С. у. функциональные и структурные изменения в подкорково-стволоиых отделах мозга (регулирующих дыхание, кровообращение, температурный баланс, уровень бодрствования - сна и т. д.) проявляются головной болью, рвотой, вялостью, повышением темп-ры тела (иногда выше 40 0C), нарушениями пульса, дыхания, судорогами, возбуждением и др. симптомами; в тяжёлых случаях развивается кома. Первая помощь: перенести больного в тень; охлаждение холодными компрессами, влажными обёртываниями и т. п.; в тяжёлых случаях - искусств, дыхание. См. также Тепловой удар.

СОЛНЦЕ, центральное тело Солнечной системы, представляет собой раскалённый плазменный шар; С.- ближайшая к Земле звезда. Масса С. 1,990 ·1010кг (в 332958 раз больше массы Земли). В С. сосредоточено 99,866% массы Солнечной системы. Солнечный параллакс (угол, под к-рым из центра С. виден экваториальный радиус Земли, находящейся на среднем расстоянии от С., равен 8",794 (4,263 ·10-5 рад). Расстояние от

Земли до С. меняется от 1,4710 *10" м (январь) до 1,5210 *10" м (июль), составляя в среднем 1,4960 *1011м (астрономическая единица). Средний угловой диаметр С. составляет 1919",26 (9,305*10-3 рад), чему соответствует линейный диаметр С. 1,392*109 м (в 109 раз больше диаметра экватора Земли). Средняя плотность С. 1,41 ·103 кг/л3. Ускорение силы тяжести на поверхности С. составляет 273,98 л/сек2. Параболич. скорость на поверхности С. (вторая космическая скорость) 6,18·105м/сек. Эффективная темп-pa поверхности С., определяемая, согласно Стефана - Больцмана закону излучения, по полному излучению С. (см. Солнечная радиация), равна 5770 К.

История телескопических наблюдений С. начинается с наблюдений, выполненных Г. Галилеем в 1611; были открыты солнечные пятна, определён период обращения С. вокруг своей оси. В 1843 нем. астроном Г. Швабе обнаружил цикличность солнечной активности. Развитие методов спектр, анализа позволило изучить физ. условия на С. В 1814 Й. Фраунгофер обнаружил тёмные линии поглощения в спектре С.- это положило начало изучению хим. состава С. С 1836 регулярно ведутся наблюдения затмений С., что привело к обнаружению короны и хромосферы С., а также солнечных протуберанцев. В 1913 амер. астроном Дж. Хейл наблюдал зеемановское расщепление фраунгоферовых линий спектра солнечных пятен и этим доказал существование на С. магнитных полей. К 1942 швед, астроном Б. Эдлен и др. отождествили неск. линий спектра солнечной короны с линиями высокоионнзованных элементов, доказав этим высокую температуру в солнечной короне. В 1931 Б. Лио изобрёл солнечный коронограф, позволивший наблюдать корону и хромосферу вне затмений. В нач. 40-х гг. 20 в. было открыто радиоизлучение Солнца. Существенным толчком для развития физики С. во 2-й пол. 20 в. послужило развитие магнитной гидродинамики и физики плазмы. После начала космич. эры изучение ультрафиолетового и рентгеновского излучения С. ведётся методами внеатмосферной астрономии с помощью ракет, автоматич. орбитальных обсерваторий на спутниках Земли, космич. лабораторий с людьми на борту. В СССР исследования С. ведутся на Крымской и Пулковской обсерваториях, в астрономич. учреждениях Москвы, Киева, Ташкента, Алма-Аты. Абастумани, Иркутска и др. Исследованиями С. занимается большинство зарубежных астрофизич. обсерваторий (см. Астрономические обсерватории и институты).

Вращение С. вокруг оси происходит в том же направлении, что и вращение Земли, в плоскости, наклонённой на 7° 15' к плоскости орбиты Земли (эклиптике). Скорость вращения определяется по видимому движению различных деталей в атмосфере С. и по сдвигу спектральных пиний в спектре края диска С. вследствие эффекта Доплера. Таким образом было обнаружено, что период вращения С. неодинаков на разных широтах. Положение различных деталей на поверхности С. определяется с помощью гелиографич. координат, отсчитываемых от солнечного экватора (гелиографич. широта) и от центрального меридиана видимого диска С. или от нек-рого меридиана, выбранного в качестве начального (т. н. меридиана Каррингтона). При этом считают, что С. вращается как твёрдое тело. Положение начального меридиана приводится в Астрономических ежегодниках на каждый день. Там же приводятся сведения о положении оси С. на небесной сфере. Один оборот относительно Земли точки с гелиографич. широтой 17° совершают за 27,275 сут (синодический период). Время оборота на той же широте С. относительно звёзд (сидерический период) - 25,38 сут. Угловая скорость вращения [$\omega$] для сидерического вращения изменяется с гелио-графической ши-ротой [$\varphi$] по закону: [$\omega$] = 14°, 44-3° sin2[$\varphi$] в сутки. Линейная скорость вращения на экваторе С.- ок. 2000 м/ сек.

С. как звезда является типичным желтым карликом и располагается в средней части гл. последовательности звёзд на Герцшпрунга - Ресселла диаграмме. Видимая фотовизуальная звёздная величина С. равна - 26,74, абс. визуальная звёздная величина Mv равна + 4,83. Показатель цвета С. составляет для случая синей (В) и визуальной (V) областей спектра Mн - Mv = 0,65. Спектральный класс С. G2V. Скорость движения относительно совокупности ближайших звёзд 19,7*103м!сек. С. расположено внутри одной из спиральных ветвей нашей Галактики на расстоянии ок. 10 кис от её центра. Период обращения С. вокруг центра Галактики ок. 200 млн. лет. Возраст С.- ок. 5 *109 лет.

Внутреннее строение С. определено в предположении, что оно является сферически симметричным телом и находится в равновесии. Уравнение переноса энергии, закон сохранения энергии, уравнение состояния идеального газа, закон Стефана - Больцмана и условия гидростатического, лучистого и конвективного равновесия вместе с определяемыми из наблюдений значениями полной светимости, полной массы и радиуса С. и данными о его хим. составе дают возможность построить модель внутр. строения С. Полагают, что содержание водорода в С. по массе ок. 70%, гелия ок. 27%, содержание всех остальных элементов ок. 2,5%. На основании этих предположений вычислено, что температура в центре С. составляет 10-15 ·106К, плотность ок. 1,5 *105 кг/л3, давление 3,4 *1O16н/м2(ок. 3*1011 атмосфер). Считается, что источником энергии, пополняющим потери на излучение и поддерживающим высокую темп-ру С., являются ядерные реакции, происходящие в недрах С. Среднее количество энергии, вырабатываемое внутри С., составляет 1,92 эрг на г в сек. Выделение энергии определяется ядерными реакциями, при к-рых водород превращается в гелий. На С. возможны 2 группы термоядерных реакций такого типа: т. н. протон-протонный (водородный) цикл и углеродный цикл (цикл Бете). Наиболее вероятно, что на С. преобладает протон-протонный цикл, состоящий из 3 реакций, в, первой из к-рых из ядер водорода образуются ядра дейтерия (тяжёлый изотоп водорода, атомная масса 2); во второй из ядер дейтерия образуются ядра изотопа гелия с атомной массой 3 и, наконец, в третьей из них образуются ядра устойчивого изотопа гелия с атомной массой 4.

Перенос энергии из внутр. слоев С. в основном происходит путём поглощения электромагнитного излучения, приходящего снизу, и последующего переизлучения. В результате понижения темп-ры при удалении от центра С. постепенно увеличивается длина волны излучения, переносящего большую часть энергии в верх, слои (см. Вина закон излучения). Перенос энергии движением горячего вещества из внутр. слоев, а охлаждённого внутрь (конвекция) играет существенную роль в сравнительно более высоких слоях, образующих конвективную зону С., к-рая начинается на глубине порядка 0,2 солнечных радиуса и имеет толщину ок. 108м. Скорость конвективных движений растёт с удалением от центра С. и во внеш. части конвективной зоны достигает (2-2,5)*103 м!сек. В ещё более высоких слоях (в атмосфере С.) перенос энергии опять осуществляется излучением. В верх, слоях атмосферы С. (в хромосфере и короне) часть энергии доставляется механич. и магнитогидродинамич. волнами, к-рые генерируются в конвективной зоне, но поглощаются только в этих слоях. Плотность в верхней атмосфере очень мала, и необходимый отвод энергии за счёт излучения и теплопроводности возможен только, если кинетич. темп-pa этих слоев достаточно велика. Наконец, в верх, части солнечной короны большую часть энергии уносят потоки вещества, движущиеся от С., т. н. солнечный ветер. Темп-pa в каждом слое устанавливается на таком уровне, что автоматически осуществляется баланс энергии: количество приносимой энергии за счёт поглощения всех видов излучения, теплопроводностью или движением вещества равно сумме всех энергетич. потерь слоя.

Полное излучение С. определяется по освещённости, создаваемой им на поверхности Земли,- ок. 100 тыс. лк, когда С. находится в зените. Вне атмосферы на среднем расстоянии Земли от С. освещённость равна 127 тыс. лк. Сила света С. составляет 2,84*1027св. Количество энергии, приходящее в 1 мин на площадку в 1 см2, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от С., называют солнечной постоянной. Мощность общего излучения С.- 3,83 81026 em, из к-рых на Землю попадает ок. 2 *1017вт, средняя яркость поверхности С. (при наблюдении вне атмосферы Земли) - 1,98 *109нт, яркость центра диска С.