БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201ервые космонавты (США) высадились на поверхность Луны (1969), амер. космич. зонды "Пионер-10" и "Пионер-11" (1972-74) преодолели пояс малых планет и прошли в непосредств. близости от Юпитера. Планируются полеты к периодич. кометам и мягкая посадка космич. аппарата на малую планету, приближающуюся к Земле на близкое расстояние.

Элементы планетных орбит (по данным на 1973)

Планета

Cp расстояние от Солнца (а е )

Эксцентриситет орбиты

Угол наклона плоскости орбиты к плоскости эклиптики (градусы)

Период обращения вокруг Солнца (в годах)



Меркурий

0,387

0,206

7,00

0,24



Венера

0,723

0,007

3,39

0,62



Земля

1 ,000

0,016

-

1,00



Марс

1 ,524

0,093

1,85

1,88



Юпитер

5,203

0,043

1 ,31

11,86



Сатурн

9,539

0,056

2,49

29,46



Уран

19,19

0,046

0,77

84,02



Нептун

30,06

0,008

1 ,77

164,79



Плутон

39,75

0,253

17,15

250,6




Человечество начинает практически осваивать внутр. область Солнечной системы.

Лит. см. при статьях Небесная механика. Планеты, Космогония. Г. А. Чеботарев.


СОЛНЕЧНАЯ ФОТОСИНТЕТИЧЕСКАЯ УСТАНОВКА, гелиоустановка для осуществления фотохимич. реакций (см. Фотохимия). С. ф. у. находятся в основном в стадии экспериментальных разработок (1975). Обычно С. ф. у. состоит из оптич. системы (включая гелиоконцентратор и ориентатор), фотохимич. реактора (в виде стеклянного сосуда) и системы автоматич. управления.

Схема экспериментальной гелиоустановки для нитрозирования циклогексана: / - параболоцилиндрическое зеркало; 2 - ориентатор; 3 - привод вращения ориечтатора; 4 - реактор; 5 - датчик системы автоматического управления.

Перспективны С. ф. у. для нитрозирования циклогексана в процессе произ-ва капролактама (см. рис.). Их целесообразно эксплуатировать совместно с двумя вспомогательными - холодильной (поддерживающей постоянную темп-ру реактора) и химической (вырабатывающей вещества, необходимые для реакции нитрозирования). Вся группа установок может работать за счёт солнечной энергии, образуя единый комплекс.


СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ СТАНЦИЯ, солнечная энергетическая установка, отличающаяся повышенной мощностью (до тыс. кет). С. э. с. могут быть чисто тепловые (производящие только пар), электрические и комбинированные - типа ТЭЦ. Преобразование в них солнечной энергии в электрическую может быть непосредственным - фотоэлектрическими генераторами либо осуществляться по классич. циклу паровой котел - турбина - генератор, с применением гелиоконцентраторов. Разработаны 2 осн. схемы С. э. с.: с большим числом (напр., ~103) одинаковых плоских отражателей, фокусирующих энергию солнечной радиации на общем паровом котле, и с параболоцилиндрич. концентраторами, каждый из к-рых снабжён отд. трубчатым котлом. При твёрдом графике потребления энергии в энергосистеме С. э. с. необходимо дублировать станциями иного типа или снабжать аккумуляторами. С. э. с. перспективны как источник энергии, не загрязняющий окружающую среду. Работы над проектами С. э. с. ведутся в СССР, США и др. странах; реализация проектов ожидается в 80-х гг. 20 в. Б. А. Гарф.


СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА, гелиоустановка, улавливающая солнечную радиацию и преобразующая ее энергию в тепловую или электрическую. Соответственно различают тепловые и электрич. С. э. у. В исторически

первых С. э. у.- тепловых - конечным продуктом являются горячая вода (см. Солнечный водонагреватель), технологич. пар, пресная вода (см. Солнечный опреснитель) или искусств. холод. Электрич. С. э. у. в зависимости от принципа преобразования могут быть фотоэлектрическими (см. Солнечная батарея), термоэлектрическими (см. Солнечный термоэлектрогенератор), термоэмиссионны-ми (см. Термоэмиссионный преобразователь энергии) или С. э. у. с машинным циклом (см. Солнечная энергетическая станция).

В низкотемпературных С. э. у. используют солнечную радиацию естеств. плотности. Получаемая в них, напр., горячая вода (с темп-рой до 60- 70 0C) идёт на отопление помещений, а пары низкокипящих жидкостей (фреонов, хлорэтила и др.) используются для привода спец. турбин и в холодильных машинах. Температурный эффект и кпд таких С. э. у. улучшают, придавая их поглощающим поверхностям селективные свойства (см. Селективные покрытия). В высокотемпературных С. э. у. плотность излучения повышают в 102 - 104 раз, для чего применяют оптич. (гл. обр. зеркальные) концентраторы солнечной радиации (гелиоконцентраторы).

С. э. у. находят как наземное, так и космич. применение. Наземные С. э. у. применяются в незначит. масштабах (1975) из-за их высокой стоимости, а также ограничений, накладываемых климатич. условиями. Космич. С. э. у. используются для автономного энергоснабжения искусств, спутников Земли и др. космич. аппаратов. Перспектива развития С. э. у. связана с истощением запасов минеральных видов топлива, с обострением проблемы сохранения чистоты окружающей среды, с ростом темпов освоения околосолнечного космоса.

Лит.: Исследования по использованию солнечной энергии, пер. с англ., M., 1957; Вейнберг В. Б., Оптика в установках для использования солнечной энергии, M.. 1958; Использование солнечной энергии при космических исследованиях. Сб. ст., пер. с англ., M., 1964; Л ас л о Т., Оптические высокотемпературные печи, пер. с англ., M., 1968. Д. И. Тепляков.


СОЛНЕЧНИКИ, рыбы-солнечники (Zeiformes), отряд рыб, близких к окунеобразным. Тело обычно сжато с боков, высокое; в анальном плавнике имеется 1-4 колючки, в брюшных плавниках 6-9 колючек. Рот, выдвигаясь во время захвата пищи, образует широкую трубку. 3-6 семейств, включающих ок.

Обыкновенный солнечник.

50 видов. Живут у берегов и по склону материковой отмели тропич. и тёплых морей; преим. глубоководные (нек-рые виды обитают глубже 1000 м). Типичный представитель - обыкновенный С. (Zeus faber); длина обычно 20-30 см,

иногда до 50 см; весит до 8 кг; на боку - чёрное пятно. Распространён в вост. части Атлантич. ок. и в Средиземном м.; держится в основном в придонных слоях воды на глуб. 100-500 м. Хищник; питается преим. сельдью, сардиной, песчанкой. Промысловое значение невелико. Это единственный вид отряда С., изредка встречающийся в водах СССР (в Чёрном м.).

Лит.: Световидов A. H, Рыбы Чёрного моря, М.- Л., 1964, Никольский В. Г., Частная ихтиология, 3 изд., M., 1971; Жизнь животных, т. 4, ч 1, M., 1971. В. M. Маку шок.


СОЛНЕЧНИКИ (Heliozoa), подкласс простейших класса саркооовых. Тело обычно шаровидное, с расходящимися во все стороны, подобно лучам, отростками - псевдоподиями, имеющими плотные протоплазматич. осевые нити. Среди С. имеются как голые формы, так ц снабженные наружным кремнезёмным скелетом. Ядро одно или их много. Большинство С.- пресноводные или морские планктонные организмы; нек-рые прикрепляются к субстрату при помощи стебелька. Питаются водорослями, простейшими, коловратками и др.; для овладения более крупной добычей сливаются по нескольку. Имеют сократительные вакуоли. Размножаются обычно делением надвое; у части С. открыт половой процесс, гаметы имеют вид небольших С.

Илл. см. т. 21, вклейка к стр. 112 (рис. 10).


СОЛНЕЧНОГОРСК, город областного подчинения (в результате слияния в 1928 с. Солнечная Гора и пристанционного посёлка Подсолнечное был образован пос. Солнечногорский; с 1938 - город), центр Солнечногорского р-на Московской обл. РСФСР. Расположен на берегу Сенежского оз., на шоссе Москва - Ленинград. Ж.-д. станция (Подсолнечная) в 65 км к С.-З. от Москвы. 38 тыс. жит. (1975). 3-ды: по произ-ву металлич. сетки, стекольный. На Сенежском озере - рыболовно-спортивное X-BO. Вблизи - санатории, дома отдыха, пионерские лагеря.


СОЛНЕЧНОДОЛЬСК, посёлок гор. типа в Изобильненском р-не Ставропольского края РСФСР. Расположен в 16 км от ж.-д. ст. Передовая (на линии Кавказская - Элиста). Строится Ставропольская ГРЭС (мощность 3600 Мвт)', в 1975 введён в эксплуатацию 1-й агрегат.

СОЛНЕЧНОЕ (до 1948 - Ойллила), посёлок гор. типа в Ленинградской обл. РСФСР, подчинён Сестрорецкому райсовету г. Ленинграда. Расположен на сев. берегу Финского зал. Ж.-д. станция в 35 км от Ленинграда. Детский санаторий "Солнечное", дом отдыха "Взморье" (см. Ленинградский курортный район). Назван в память о постановке здесь в летнем театре в 1905 пьесы M. Горького "Дети солнца"


СОЛНЕЧНОЕ ЗАТМЕНИЕ, см. Затмения.


СОЛНЕЧНОЕ КОЛЬЦО, прибор для определения поправки часов из наблюдений Солнца по методу соответствующих высот. Представляет собой металлич. кольцо, к-рое подвешивается в вертикальном положении на острие, что обеспечивает неизменное положение кольца относительно вертикали (см. рис.). На расстоянии ок. 45° от острия в ободе кольца имеется небольшое отверстие, а на противоположной внутр. поверхности кольца наклеена шкала с произвольными (обычно миллиметровыми) делениями.

Солнечное кольцо Глазенапа.

Повернув кольцо так, чтобы его плоскость проходила через Солнце, замечают по проверяемым часам, не позже чем за. 2 ч до полудня, момент прохождения светлого кружка, образуемого солнечными лучами, через нек-рое деление шкалы. Наблюдения повторяют после полудня и отмечают второй момент прохождения кружка через то же деление шкалы. Полусумма этих моментов с точностью до полминуты даёт показание часов в истинный полдень. Прибавляя уравнение времени, получают показание часов в средний солнечный полдень; учитывая затем географич. долготу места наблюдения и номер часового пояса, вычисляют поясное время, а затем и поправку часов. С. к. как прибор для приближённого измерения зенитного расстояния Солнца было описано ещё в 16 в., а для определения времени по соответствующим высотам Солнца применено С. П. Глазенапом (сначала в форме треугольника) в 1873. Лит.: Глазенап С. П., Друзьям и любителям астрономии, 3 изд., M.- Л., 1936.


СОЛНЕЧНОЕ СПЛЕТЕНИЕ, чревное сплетение, совокупность нервных элементов, концентрирующихся в брюшной полости вокруг начала чревной и верхней брыжеечной артерий человека. В состав С. с. входят правый и левый чревные узлы, непарный верхний брыжеечный узел и многочисл. нервы, к-рые отходят от узлов в разные стороны наподобие лучей солнца (отсюда назв.). Узлы С. с. состоят из многоотростчатых нервных клеток, на телах и отростках к-рых заканчиваются синапсами разветвления преганглионарных волокон, прошедших без перерыва узлы пограничного симпатич. ствола. Нервы С. с., помимо чувствительных и парасимпатических волокон, содержат многочисл. постганглионарные симпатич. волокна, к-рые являются отростками клеток его узлов и иннервируют железы и мускулатуру сосудов диафрагмы, желудочно-кишечного тракта, селезёнки, почек с надпочечниками и др. органов. См. также Вегетативная нервная система, Симпатическая нервная система.


СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ, реакция Земли (её внешних оболочек, включая биосферу) на изменение солнечной активности. Уровень солнечной активности (число активных областей и солнечных пятен, количество и мощность солнечных вспышек и т. д.) изменяется с периодом ок. 11 лет. Существуют также слабые колебания величины максимумов 11-летнего цикла с периодом ок. 90 лет. На Земле 11-летний цикл прослеживается на целом ряде явлений органич. и неорганич. природы (возмущения магнитного поля, полярные сияния, возмущения ионосферы, изменение скорости роста деревьев с периодом 11 лет, установленным по чередованию толщины годовых колец, и т. д.). На земные процессы оказывают также воздействие отд. активные области на Солнце и происходящие в них кратковременные, но иногда очень мощные вспышки. Время существования отд. активной области на Солнце может достигать 1 года. Вызываемые этой областью возмущения в магнитосфере и верхней атмосфере Земли повторяются через 27 сут (с наблюдаемым с Земли периодом вращения Солнца). Наиболее мощные проявления солнечной активности - солнечные (хромосферные) вспышки - происходят нерегулярно (чаще вблизи периодов макс, активности), длительность их составляет 5-40 мин, редко неск. часов. Энергия хромосферной вспышки может достигать ~1032эрг (~1025 дж), из выделяющейся при вспышке энергии лишь 1 -10% приходится на электромагнитное излучение в оптич. диапазоне. По сравнению с полным излучением Солнца в оптич. диапазоне энергия вспышки невелика (~10-5-10-11), но коротковолновое излучение вспышки и генерируемые при вспышке быстрые электроны, а иногда солнечные космические лучи могут дать заметный вклад в рентгеновское и корпускулярное излучение Солнца. В периоды повышения активности Солнца его рентгеновское излучение увеличивается в диапазоне 30-10 нм в 2 раза, в диапазоне 10 - 1 нм в 3-5 раз, в диапазоне 1-0,2 нмболее чем в 100 раз. По мере уменьшения длины волны излучения вклад активных областей в полное излучение Солнца увеличивается, и в последнем из указанных диапазонов практически всё излучение обусловлено активными областями. Жёсткое рентгеновское излучение с длиной волны [$\lambda$]<0,2 HM появляется в спектре Солнца лишь на короткое время после вспышек.

В ультрафиолетовом диапазоне ([$\lambda$] от 180 до 350 нм) излучение Солнца за 11-летний цикл меняется всего на 1-10%, а в диапазоне 290-2400 нм остаётся практически постоянным и составляет 3,6*1033эрг/сек, пли 3,6 *1026вт.

Постоянство энергии, получаемой Землёй от Солнца (см. Солнечная постоянная), обеспечивает стационарность теплового баланса Земли. Солнечная активность существенно не сказывается на энергетике Земли как планеты, но отд. компоненты излучения хромосферных вспышек и активных областей могут оказывать значит, влияние на многие физич., биофизич. и биохимич. процессы на Земле.

Активные области являются мощным источником корпускулярного излучения. Частицы с энергиями ок. 1 кэв (в основном протоны), распространяющиеся вдоль силовых линий межпланетного магнитного поля из активных областей, усиливают солнечный ветер - поток частиц, непрерывно испускаемых Солнцем. Эти усиления (порывы) солнечного ветра часто повторяются через 27 дней и наз. р екуррентными. Аналогичные потоки, но ещё большей энергии и плотности, возникают при вспышках. Они вызывают т. н. спорадические возмущения солнечного ветра и достигают Земли за интервалы времени от 8-10 ч до 2 сут. Протоны высокой энергии (от 100 Мэв до 1 Гэв) от очень сильных "протонных" вспышек и электроны с энергией 10-500 кэв, входящие в состав солнечных космич. лучей, приходят к Земле через десятки минут после вспышек; несколько позже приходят те из них, к-рые попали в "ловушки" межпланетного магнитного поля и двигались вместе с солнечным ветром. Коротковолновое излучение и солнечные космич. лучи (в высоких широтах·) ионизуют земную атмосферу, что приводит к колебаниям её прозрачности в ультрафиолетовом и инфракрасном диапазонах, а также к изменениям условий распространения коротких радиоволн (в ряде случаев наблюдаются нарушения коротковолновой радиосвязи, см. Ионосфера).

Усиление солнечного ветра, вызванное вспышкой, приводит к сжатию магнитосферы Земли с солнечной стороны, усилению токов на её внеш. границе, частичному проникновению частиц солнечного ветра в глубь магнитосферы (в зону авроральной радиации), пополнению частицами высоких энергий радиационных поясов Земли и т. д. (см. Земля, раздел III). Эти процессы сопровождаются колебаниями напряженности геомагнитного поля (магнитной бурей), полярными сияниями и др. геофизич. явлениями, отражающими общее возмущение магнитного поля Земли (см. Вариации магнитные).

T. о., воздействие активных процессов на Солнце (солнечных бурь) на геофизич. явления осуществляется как коротковолновой радиацией, так и через посредство магнитного поля Земли. По-видимому, эти факторы являются главными и для физико-химич., и биологич. процессов (см. Магнитобиология). Проследить всю цепь связей, приводящих к 11-летней периодичности многих процессов на Земле, пока не удаётся, но накопленный обширный фактич. материал не оставляет сомнений в существовании таких связей. Так, была установлена корреляция между 11-летним циклом солнечной активности и землетрясениями, колебаниями уровня озёр, урожаями с.-х. культур, размножением и миграцией насекомых, эпидемиями гриппа, тифа, холеры, числом сердечно-сосудистых заболеваний и т. д. Эти данные указывают на постоянно действующие С.-з. с. Раскрытие механизмов С.-з. с. представляет большой научный и практич. интерес. В частности, на этой основе может быть значительно повышена точность долгосрочных прогнозов погоды и необходимых для космонавтики прогнозов интенсивности корпускулярных потоков в околоземном пространстве. Влияние С.-з. с. на физич. процессы изучает гелиогеофизика, влияние на биологич. процессы - гелиобиология, на погоду - гелиометеорология.

Лит.: Э л л и с о н M. А., Солнце и его влияние на Землю, M., 1959; Солнечно-земная физика. Сб., пер. с англ., M., 1968; Влияние солнечной активности на атмосферу и биосферу Земли, M., 1971; Чиже вс к и и А. Л., Земное эхо солнечных бурь, M., 1973. M. А. Ливши".


СОЛНЕЧНЫЕ ПЯТНА, тёмные образования, наблюдаемые в фотосфере Солнца. Поперечники С. п. достигают 200 000 км; их темп-pa ниже темп-ры фотосферы на 1-2 тыс. градусов (4500 К и ниже), вследствие чего они в 2-5 раз темнее фотосферы. Cp. годовое число С. п. изменяется с периодом 11 лет. См. Солнце, Солнечная активность.

Лит.: Брей Р., Л о у х е д P, Солнечные пятна, пер. с англ., M., 1967.


СОЛНЕЧНЫЕ СУТКИ, см. Сутки.

СОЛНЕЧНЫЕ ЦАПЛИ (Eurypygidae), семейство птиц отряда журавлеобразных; единств, представитель сем.- Eurypyga helias. Дл. тела ок. 45 см. Оперение мягкое, густое с поперечным и крапчатым рисунком белого, серого, чёрного и каштанового цвета. Распространены в тропич. Америке от Юж. Мексики до Центр. Бразилии. Держатся скрытно, одиночками и парами в тенистых, часто заболоченных лесах по берегам водоёмов; лишь во время тока самец, развернув широкие крылья и хвост, выходит на поляны. Наземные птицы. Питаются насекомыми, рачками, рыбками. Гнёзда из растит, материала и грязи, чаше на деревьях или кустарниках. В кладке 2 яйца. Насиживают ок. 28 суток.

Солнечная цапля; токующий самец.


СОЛНЕЧНЫЕ ЧАСЫ, прибор, служащий для определения времени по Солнцу. С. ч. состоят из стержня или пластинки, отбрасывающих тень, и циферблата, на к-рый тень падает, указывая истинное солнечное время. В зависимости от расположения плоскости циферблата различают экваториальные, горизонтальные и вертикальные С. ч. Во всех типах С. ч. стержень или край отбрасывающей тень пластинки ориентированы параллельно оси мира и пересекают циферблат в его центре; деление циферблата, соответствующее полдню, находится в плоскости меридиана, проходящего через этот центр. В э кваториальных С. ч. плоскость

Рис. 1. Горизонтальные солнечные часы.

циферблата параллельна плоскости небесного экватора. Циферблат разделён на равноотстоящие деления из расчёта 360° =24 ч. В горизонтальных С. ч. циферблат горизонтален (рис. 1); деления на него наносятся в соответствии с формулой:

tg х = tg t*sin [$\varphi$],

где х - угол при центре циферблата между данным делением и полуденной линией (т. е. делением, соответствующим полдню), t - часовой угол Солнца (истинное солнечное время), [$\varphi$] - географич. широта места.

Рис. 2. Вертикальные солнечные часы.

Деления, соответствующие 6 и 18 ч, всегда перпендикулярны к полуденной линии. Вертикал ьн ы е С. ч. располагают обычно на стенах различных строений (рис. 2), вследствие чего плоскость циферблата может оказаться в любом азимуте. В таких С. ч. деления симметричны относительно полуденного деления лишь при ориентировке циферблата перпендикулярно к меридиану. В этом случае формула для расчёта делений имеет вид:

tg х = tg t*cos [$\varphi$].

Существуют конструкции переносных С. ч.

Положение тени на циферблате указывает истинное солнечное время; для перевода его в среднее солнечное время к нему нужно прибавить уравнение времени, а для получения поясного времени учесть также дополнит, поправку, зависящую от номера часового пояса данного места и его географич. долготы. Точность определения времени по С. ч. обычно не превосходит неск. минут.


СОЛНЕЧНЫЙ, посёлок гор. типа в Комсомольском р-не Хабаровского края РСФСР. Расположен на р. Силинка (басе. Амура), в 38 км к С.-З. от г. Комсомольска-на-Амуре. Горно-обогатит. комбинат (оловянная руда).

СОЛНЕЧНЫЙ БЕРЕГ (Слънчев бряг), приморский климатич. курорт в Болгарии, на берегу Чёрного моря, к С. от Несебыра. Лето очень тёплое (ср. темп-ра июля 23,3 0C), зима очень мягкая (ср. темп-pa янв. 2,4 0C); осадков 430 мм в год. Леч. средства: климатотерапия, морские купания (с середины июня до октября). Мелкопесчаный пляж (шир. 300-400 м, протяжённость св. 5 км). Виноградолечение. Лечение заболеваний органов дыхания нетуберкулёзного характера, функциональных расстройств нервной системы и т. п. Пансионаты, отели, дачи и др.


СОЛНЕЧНЫЙ ВЕТЕР, представляет собой постоянное радиальное истечение плазмы солнечной короны в межпланетное пространство. Образование С. в. связано с потоком энергии, поступающим в корону из более глубоких слоев Солнца. По-видимому, переносят энергию магнитогидродинамич. и слабые ударные волны (см. Плазма, Солнце). Для поддержания С. в. существенно, чтобы энергия, переносимая волнами и теплопроводностью, передавалась и верхним слоям короны. Постоянный нагрев короны, имеющей темп-ру 1,5-2 млн. градусов, не уравновешивается потерей энергии за счёт излучения, т. к. плотность короны мала. Избыточную энергию уносят частицы С. в.

По существу С. в.- это непрерывно расширяющаяся солнечная корона. Давление нагретого газа вызывает её стационарное гидродинамич. истечение с постепенно нарастающей скоростью. В основании короны (~10 тыс. км от поверхности Солнца) частицы имеют радиальную скорость порядка сотен м/сек. на расстоянии неск. радиусов от Солнца она достигает звуковой скорости в плазме 100 - 150 км/сек, а на расстоянии 1 а. е. (у орбиты Земли) скорость протонов плазмы составляет 300-750 км/сек. Вблизи орбиты Земли темп-pa плазмы С. в., определяемая по тепловой составляющей скоростей частиц (по разности скоростей частиц и средней скорости потока), в периоды спокойного Солнца составляет ~ 104K, в активные периоды доходит до 4 *105 K. С. в. содержит те же частицы, что и солнечная корона, т. е. гл. обр. протоны и электроны, присутствуют также ядра гелия (от 2 до 20%). В зависимости от состояния солнечной активности поток протонов вблизи орбиты Земли меняется от 5· 10' до 5·