БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201оснащением вооружённых сил и с освоением космоса. Методы С. а. использовались в США при проведении программ создания реактивного бомбардировщика В-58, стратегич. ракет и средств ПВО, при сравнит. оценке систем вооружения и др.

В 1972 в Лаксенбурге, близ Вены, создан Междунар. ин-т прикладного С. а. (ПАЗА), в к-ром участвуют 12 стран (в т. ч. СССР и США); он ведёт работу по применению методов С. а. преим. к решению проблем, требующих междунар. сотрудничества (напр., охрана окружающей среды, освоение ресурсов Мирового океана, совместное использование пограничных водных бассейнов).

Основой С. а. считают общую теорию систем и системный подход. С. а., однако, заимствует у них лишь самые общие исходные представления и предпосылки. Его методологич. статус весьма необычен: с одной стороны, С. а. располагает детализированными методами и процедурами, почерпнутыми из совр. науки и созданными специально для него, что ставит его в ряд с др. прикладными направлениями совр. методологии, с другой -в развитии С. а. отсутствует тенденция к оформлению его в строгую и законченную теорию. В С. а. тесно переплетены элементы науки и практики. Поэтому далеко не всегда обоснование решений с помощью С. а. связано с использованием строгих формализованных методов и процедур; допускаются и суждения, основанные на личном опыте и интуиции, необходимо лишь, чтобы это обстоятельство было ясно осознано. Важнейшие принципы С. а. сводятся к следующему: процесс принятия решений должен начинаться с выявления и чёткого формулирования конечных целей; необходимо рассматривать всю проблему как целое, как единую систему и выявлять все последствия и взаимосвязи каждого частного решения; необходимы выявление и анализ возможных альтернативных путей достижения цели; цели отд. подразделений не должны вступать в конфликт с целями всей программы.

Центр. процедурой в С. а. является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, к-рые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. С. а. опирается на ряд прикладных математич. дисциплин и методов, широко используемых в совр. деятельности управления: операций исследование, метод экспертных оценок, метод критич. пути, очередей теорию и т. п. Технич. основа С. а.- совр. вычислит. машины и информац. системы.

Методологич. средства, применяемые при решении проблем с помощью С. а., определяются в зависимости от того, преследуется ли единств. цель или нек-рая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно чётко выраженная цель, степень достижения к-рой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе неск. критериев, применяют аппарат теории полезности, с помощью к-рого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием неск. лиц или систем, из к-рых каждая преследует свои цели и принимает свои решения, используются методы игр теории.

Несмотря на то, что диапазон применяемых в С. а. методов моделирования и решения проблем непрерывно расширяется, С. а. по своему характеру не тождествен науч. исследованию: он не связан с задачами получения науч. знания в собств. смысле, но представляет собой лишь применение методов науки к решению практич. проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

Лит.: К в е й д Э., Анализ сложных систем, пер. с англ., М., 1969; О п т н е р С. Л., Системный анализ для решения деловых и промышленных проблем, пер. с англ., М., 1969; Новое в теории и практике управления производством в США, пер. с англ., М., 1971; США: современные методы управления, М., 1971; Джонсон Р., Каст Ф., Розенцвейг Д., Системы и руководство, пер. с англ., М., 1971; Гвишиани Д. М., Организация и управление, 2 изд., М., 1972; Никаноров С. П., Системный анализ и системный подход, в кн.: Системные исследования. Ежегодник. 1971, М., 1972; А к о ф ф Р. Л., Планирование в больших экономических системах, пер. с англ., М., 1972; Я н г С., Системное управление организацией, пер. с англ., М., 1972; Юдин Б. Г., Новые элементы в технологии капиталистического управления, "Вопросы философии", 1973, №1;Клиланд Д., Кинг В., Системный анализ и целевое управление, пер. с англ., М., 1974; Systems thinking, ed. by F, E. Emery, Harmondsworth, 1969; Rivett P., Principles of model building. The construction of models for decision analysis, [Chichesterl, 1972; Н о о s I. R., Systems analysis in public policy. A critique, Berk., 1974. См. также лит. при статьях Система, Системный подход. Б.Г.Юдин.

СИСТЕМНЫЙ ПОДХОД, направление методологии специально-науч. познания и социальной практики, в основе к-рого лежит исследование объектов как систем. С. п. способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их изучения. Методология, специфика С. п. определяется тем, что он ориентирует исследование на раскрытие целостности объекта и обеспечивающих её механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретич. картину.

Стремление к целостному охвату объекта изучения, к системной орг-ции знания, всегда свойственное науч. познанию, выступает как проблема уже в антич. философии и науке. Но вплоть до сер. 19 в. объяснение феномена целостности либо ограничивалось уровнем конкретных предметов (типа живого организма), внутр. целостность к-рых была совершенно очевидна и не требовала спец. доказательств, либо переносилось в сферу спекулятивных натурфилософских построений; идея же системной организованности рассматривалась только применительно к знанию (в этой области и была накоплена богатая традиция, идущая ещё от стоиков и связанная с выявлением принципов логич. орг-ции систем знания). Подобному подходу к трактовке системности соответствовали и ведущие познават. установки классич. науки, прежде всего элементаризм, к-рый исходил из необходимости отыскания простой, элементарной основы всякого объекта и, таким образом, требовал сведения сложного к простому, и механицизм, опиравшийся на постулат о едином принципе объяснения для всех сфер реальности и выдвигавший на роль такого принципа однозначный детерминизм.

Задачи адекватного воспроизведения в знании сложных социальных и биологич. объектов действительности впервые в науч. форме были поставлены К. Марксом и Ч. Дарвином. "Капитал" К. Маркса послужил классич. образцом системного исследования общества как целого и различных сфер обществ. жизни, а воплощённые в нём принципы изучения органичного целого (восхождение от абстрактного к конкретному, единство анализа и синтеза, логического и исторического, выявление в объекте разнокачественных связей и их взаимодействия, синтез структурно-функциональных и генетич. представлений об объекте и т. п.) явились важнейшим компонентом диалектико-материалистич. методологии науч. познания. Созданная Дарвином теория биологич. эволюции не только ввела в естествознание идею развития, но и утвердила представление о реальности надорганизменных уровней организации жизни - важнейшую предпосылку системного мышления в биологии.

В 20 в. С. п. занимает одно из ведущих мест в науч. познании. Предпосылкой его проникновения в науку явился прежде всего переход к новому типу науч. задач: в целом ряде областей науки центр. место начинают занимать проблемы организации и функционирования сложных объектов; познание начинает оперировать системами, границы и состав к-рых далеко не очевидны и требуют спец. исследования в каждом отд. случае. Во 2-й пол. 20 в. аналогичные по типу задачи возникают и в социальной практике: техника всё более превращается в технику сложных систем, где многообразные технические и др. средства тесно связаны решением единой крупной задачи (напр., космич. проекты, человеко-машинные системы разного рода, см. Система "человек и машина"); в социальном управлении вместо господствовавших прежде локальных, отраслевых задач и принципов ведущую роль играют крупные комплексные проблемы, требующие тесного взаимоувязывания экономич., социальных и иных аспектов обществ. жизни (напр., проблемы создания совр. производств. комплексов, развития городов, мероприятия по охране природы). Изменение типа науч. и практич. задач сопровождается появлением общенаучных и спец.-науч. концепций, для к-рых характерно использование в той или иной форме осн. идей С. п. Так, в учении В. И. Вернадского о биосфере и ноосфере науч. познанию предложен новый тип объектов - глобальные системы. А. А. Богданов и ряд др. исследователей начинают разработку теории орг-ции, имеющей широкое значение. Выделение особого класса систем - информационных и управляющих - послужило фундаментом возникновения кибернетики. В биологии системные идеи используются в экологич. исследованиях, при изучении высшей нервной деятельности, в анализе биологич. орг-ции, в систематике. Эти же идеи применяются в нек-рых психологич. концепциях; в частности, гештальтпсихология вводит оказавшееся плодотворным представление о психологич. структурах, характеризующих деятельность по решению задач; культурно-историч. концепция Л. С. Выготского, развитая его учениками, основывает психологич. объяснение на понятии деятельности, истолковываемом в системном плане; в концепции Ж. Пиаже основополагающую роль играет представление о системе операций интеллекта. В экономич. науке принципы С. п. получают распространение особенно в связи с задачами оптимального экономич. планирования, к-рые требуют построения многокомпонентных моделей социальных систем разного уровня. В практике управления идеи С. п. кристаллизуются в методоло-гич. средствах системного анализа.

Наряду с развитием С. п. "вширь", т. е. распространением его принципов на новые сферы науч. знания и практики, с сер. 20 в. начинается систематич. разработка этих принципов в методологич. плане. Первоначально методологич. исследования группировались вокруг задач построения общей теории систем (первая программа её построения и сам термин были предложены Л. Берталанфи). Однако развитие исследований в этом направлении показало, что совокупность проблем методологии системного исследования существенно превосходит рамки задач общей теории систем. Для обозначения этой более широкой сферы методологич. проблем и применяют термин "С. п.", к-рый с 70-х гг. прочно вошёл в науч. обиход (в науч. лит-ре разных стран для обозначения этого понятия используют и др. термины - "системный анализ", "системные методы", "системно-структурный подход", "общая теория систем"; при этом за понятиями системного анализа и общей теории систем закреплено ещё и специфическое, более узкое значение; с учётом этого термин "С. п." следует считать более точным, к тому же он наиболее распространён в лит-ре на рус. языке).

С. п. не существует в виде строгой методологич. концепции: он выполняет свои эвристич. функции, оставаясь не очень жёстко связанной совокупностью познават. принципов, осн. смысл к-рых состоит в соответствующей ориентации конкретных исследований. Эта ориентация осуществляется двояко. Во-первых, содержательные принципы С. п. позволяют фиксировать недостаточность старых, традиционных предметов изучения для постановки и решения новых задач. Во-вторых, понятия и принципы С. п. существенно помогают строить новые предметы изучения, задавая структурные и типологич. характеристики этих предметов и т. о. способствуя формированию конструктивных исследовательских программ.

Значение критич. функции новых принципов познания было убедительно продемонстрировано ещё Марксом, "Капитал" к-рого далеко не случайно носит подзаголовок "Критика политической экономии": именно последоват. критика принципов классич. политэкономии позволила раскрыть узость, недостаточность её исходной содержательно-концептуальной базы и расчистить путь для построения нового предмета этой науки, адекватного задачам изучения целостного функционирования и развития капиталистич. экономики. Решение аналогичных задач выступает важным предварит. условием и при построении совр. системных концепций. Напр., переходу к конструированию совр. технич. систем и возникновению системотехники (к-рая выступила одной из важных конкретизации С. п. в области совр. техники) предшествовали осознание и критика подхода, господствовавшего на прежних ступенях развития техники, когда "единицей" конструирования было отд. технич. средство (машина, отд. орудие и т. д.), а не целостная функция, как это стало теперь. Условием разработки эффективных мероприятий по защите окружающей среды явилась весьма последоват. критика прежнего подхода к развитию произ-ва, игнорировавшего системную связь общества и природы. Утверждение системных принципов в совр. биологии сопровождалось критич. анализом односторонности узкоэволюционистского подхода к живой природе, не позволявшего зафиксировать важную самостоят. роль факторов биологии, организации. Т. о., эта функция С. п. носит конструктивный характер и связана прежде всего с обнаружением неполноты наличных предметов изучения, их несоответствия новым науч. задачам, а также с выявлением недостаточности применяемых в той или иной отрасли науки и практики принципов объяснения и способов построения знания. Эффективное проведение этой работы предполагает последоват. реализацию принципа преемственности в развитии систем знания.

Позитивная роль С. п. может быть сведена к следующим осн. моментам. Во-первых, понятия и принципы С. п. выявляют более широкую познават. реальность по сравнению с той, к-рая фиксировалась в прежнем знании (напр., понятие биосферы в концепции Вернадского, понятие биогеоценоза в совр. экологии, оптимальный подход в экономич. управлении и планировании).

Во-вторых, С. п. содержит в себе новую по сравнению с предшествующими схему объяснения, в основе к-рой лежит поиск конкретных механизмов целостности объекта и выявление достаточно полной типологии его связей (см. Связь). Реализация этой функции обычно сопряжена с большими трудностями: для действительно эффективного исследования мало зафиксировать наличие в объекте разнотипных связей, необходимо ещё представить это многообразие в операциональном виде, т. е. изобразить различные связи как логически однородные, допускающие непосредств. сравнение и сопоставление (такая задача была успешно решена, напр., в экологии благодаря введению представления о пищевых цепях сообществ, позволившего установить измеримые связи между их разнообразными элементами).

В-третьих, из важного для С. п. тезиса о многообразии типов связей объекта следует, что сложный объект допускает не одно, а неск. расчленений. При этом критерием обоснованного выбора наиболее адекватного расчленения изучаемого объекта может служить то, насколько в результате удаётся построить операциональную "единицу" анализа (такую, напр., как товар в экономич. учении Маркса или биогеоценоз в экологии), позволяющую фиксировать целостные свойства объекта, его структуру и динамику.

Широта принципов и осн. понятий С. п. ставит его в тесную связь с др. общенаучными методологии, направлениями совр. науки. По своим познават. установкам С. п. имеет особенно много общего со структурализмом и структурно-функциональным анализом, с к-рыми его роднит не только оперирование понятиями структуры и функции, но и акцент на изучение разнотипных связей объекта; вместе с тем принципы С. п. обладают более широким и более гибким содержанием, они не подверглись слишком жёсткой концептуализации и абсолютизации, как это имело место с нек-рыми линиями в развитии указанных направлений .

Будучи в принципе общенауч. направлением методологии и непосредственно не решая филос. проблем, С. п. сталкивается с необходимостью филос. истолкования своих положений. Сама история становления С. п. убедительно показывает, что он неразрывно связан с фундаментальными идеями материалистич. диалектики, что нередко признают и многие из зап. учёных. Именно диалектич. материализм даёт наиболее адекватное филос.-мировоззренч. истолкование С. п.: методологически оплодотворяя его, он вместе с тем обогащает собственное содержание; при этом, однако, между диалектикой и С. п. постоянно сохраняются отношения субординации, т. к. они представляют разные уровни методологии; С. п. выступает как конкретизация принципов диалектики.

Лит.: Исследования но общей теории систем. Сб. пер., М., 1969; Кремянский В. И., Структурные уровни живой материи, М., 1969; Проблемы методологии системного исследования, М., 1970; Блауберг И. В., Юдин Б. Г., Понятие целостности и его роль в научном познании, М., 1972; Блауберг И. В., Юдин Э. Г., Становление и сущность системного подхода, М., 1973; Т ю х т и н В. С., Отражение, системы, кибернетика, М., 1972; Садовский В. Н., Основания общей теории систем, М., 1974; Кузьмин В. П., Проблемы системности в теории и методологии К. Маркса, М., 1974; Системные исследования. Ежегодник, М., 1969 - 74; General systems theory, v. 1-20, N. Y., 1956 - 75; Churchman C. W., The systems approach, N. Y., [1968]; Bertalanffy L. von, General systems theory. Foundations, development, applications, 2 ed., N. Y., 1969; Trends in general systems theory, N. Y., 1972. См. также лит. при статьях Система, Системотехника, Системный анализ.

И. В. Блауберг, Э. Г. Юдин.

СИСТЕМОТЕХНИКА, научно-техническая дисциплина, охватывающая вопросы проектирования, создания, испытания и эксплуатации сложных систем (больших систем, систем большого масштаба, large scale systems). При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составных частей (элементов, подсистем), но также и к закономерностям функционирования объекта в целом (общесистемные проблемы); появляется широкий круг специфич. задач, таких, как определение общей структуры системы, орг-ция взаимодействия между подсистемами и элементами, учёт влияния внеш. среды, выбор оптимальных режимов функционирования, оптим. управление системой и т. д. По мере усложнения систем всё более значит. место отводится общесистемным вопросам, они и составляют осн. содержание С. Научной, гл. обр. математической, базой С. служит сравнительно новая науч. дисциплина - теория сло жных систем.

Для сложных систем характерна своеобразная орг-ция проектирования -в две стадии: макропроектирование (внешнее проектирование), в процессе к-рого решаются функционально-структурные вопросы системы в целом , и микропроектирование (внутр. проектирование), связанное с разработкой элементов системы как физич. единиц оборудования.

С. объединяет точки зрения, подходы и методы по вопросам внеш. проектирования сложных систем.

Макропроектирование начинается с формулировки проблемы, к-рая включает в себя по крайней мере 3 осн. раздела: определение целей создания системы и круга решаемых ею задач; оценка действующих на систему факторов и определение их характеристик; выбор показателей эффективности системы. Цели и задачи системы определяют, исходя из потребностей их практич. использования, с учётом тенденций и особенностей технич. прогресса, а также народнохозяйств. целесообразности. Существ. значение при этом имеет опыт применения имеющихся аналогичных систем, а также чёткое понимание роли проектируемой системы в нар. х-ве. Для оценки внеш. и внутр. факторов, действующих на систему, помимо опыта эксплуатации аналогичных систем, используют статистич. данные, полученные в результате спец. экспериментальных исследований. В качестве показателей эффективности выбирают числовые характеристики, оценивающие степень соответствия системы задачам, поставленным перед ней, напр.: для системы слепой посадки самолётов показателем эффективности может служить вероятность успешной посадки, для междугородной телефонной связи - ср. время ожидания соединения с абонентом, для производств. процесса - ср. число изделий, выпускаемых за смену, и т. д. Материалы по изучению целей и задач и результаты проведённых экспериментов используют для обоснования технич. задания на разработку системы.

В соответствии с технич. заданием намечают один или неск. вариантов системы, к-рые, по мнению проектировщиков, заслуживают дальнейшего рассмотрения и подробного исследования. Анализ вариантов системы (системный анализ) проводится по результатам математич. моделирования. На практике обычно отдаётся предпочтение имитационному моделированию системы на ЦВМ. Имитационная модель представляет собой некий алгоритм, при помощи к-рого ЦВМ вырабатывает информацию, характеризующую поведение элементов системы и взаимодействие их в процессе функционирования. Получаемая информация позволяет определить показатели эффективности системы, обосновать её оптимальную структуру и составить рекомендации по совершенствованию исследуемых вариантов. Существуют и аналитич. методы оценки свойств сложных систем, основанные на результатах применения теории вероятностных (случайных) процессов.

Проектировщики сложных систем -специалисты широкого профиля, инженеры-системотехники, обладающие достаточными знаниями в конкретной области техники (напр., в машиностроении, электронике, пищевой пром-сти, авиации), имеющие повышенную математич. подготовку, а также знающие основы вычислит. техники, автоматизации управления, исследования операций и особенности их практич. применения. Помимо них в группу внешнего проектирования сложных систем обычно включают специалистов по системному анализу и математич. моделированию, а также инженеров, способных организовать взаимодействие между элементами системы.

Существ. особенности имеют испытания сложных систем. Натурный эксперимент в чистом виде используется только для оценки параметров важнейших элементов системы. В комплексных же испытаниях системы значит. роль играют имитационные модели. В частности, на их основе строят имитаторы воздействий внеш. среды, генераторы фиктивных сигналов и сообщений, формируют реализации процессов функционирования элементов, участие к-рых в натурном эксперименте нецелесообразно.

Лит.: Гуд Г.-Х., М а к о л Р.-Э., Системотехника. Введение в проектирование больших систем, пер. с англ., М., 1962; Справочник по системотехнике, пер. с англ., М., 1970; Бусленко Н. П., Калашников В. В., Коваленко И. Н., Лекции по теории сложных систем, М., 1973. Н. П. Бусленко,

СИСТЕМЫ МИРА, термин, употребляемый в астрономии для обозначения представлений о строении системы небесных тел - Земля, Луна, Солнце, планеты. Попытки создания С. м. предпринимались в Др. Греции уже в 6 в. до н. э. (Фалес, Анаксимандр, Анаксимен). Исторически наибольшее значение имела геоцентрич. С. м., разработанная древнегреч. учёными Аристотелем (4 в. до н.э.) и Птолемеем (2 в. н. э.), и гелиоцентрич. С. м. польского астронома Н. Коперника (1-я пол. 16 в.).

В геоцентрич. С. м., принимавшейся за истинную в течение ок. 2000 лет, нашёл яркое воплощение антропоцентризм в форме идеи о центральном положении Земли во Вселенной. В системе мира Аристотеля неподвижная Земля окружена снаружи семью "небесами", принадлежащими "планетам": Луне, Меркурию, Венере, Солнц