БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201гл. обр. для неорганич. соединений и носил случайный характер. Синтетич. получение сложных веществ стало возможным лишь после того, как были накоплены сведения об их составе и свойствах с развитием методов органич. и физико-химич. анализа. Принципиальное значение имели первые синтезы органич. веществ - щавелевой к-ты и мочевины, осуществлённые Ф. Вёлером в 1824 и 1828 (см. Органическая химия). Попытки синтеза аналогов сложных природных соединений, предпринятые в сер. 19 в., когда стройной теории строения органич. соединений не существовало, показали лишь принципиальную возможность синтеза таких веществ, как жиры (П. Э. М. Бертло) и углеводы (А. М. Бутлеров). Позднее уже на теоретич. основе (см. Химического строения теория) были синтезированы индиго, камфора и другие сравнительно простые соединения, а также более сложные -нек-рые углеводы, аминокислоты и пеп-тиды. Начиная с 20-х гг. 20 в. плодотворное влияние на методологию С. х. оказали работы Р. Робинсона по получению ряда сложных молекул путями, имитирующими пути их образования в природе. С кон. 30-х гг. наблюдается бурное развитие С. х. вначале в области стероидов, алкалоидов и витаминов, а затем в области изопреноидов, антибиотиков, полисахаридов, пептидов и нуклеиновых кислот. В 40-60-х гг. существенный вклад в развитие тонкого органич. синтеза внёс Р. Б. Вудворд, осуществивший синтез ряда важных природных соединений (хинин, кортизон, хлорофилл, тетрациклин, витамин B12 и др.). Примером больших успехов С. х. может служить также первый полный синтез гена аланиновой транспортной рибонуклеиновой кислоты (из дрожжей), осуществлённый в 1970 X. Г. Кораной с сотрудниками.

Развитие органич. синтеза происходит по след. принципиальным направлениям: произ-во важнейших пром. продуктов (полимеров, синтетич. топлива, красителей и пр.); получение различных физиологически активных веществ для медицины, с. х-ва, пищ. пром-сти, парфюмерии; подтверждение строения сложных природных соединений и получение молекул с "необычным" строением для проверки и совершенствования теории органич. химии; расширение арсенала реакций и методов С. х., включая использование катализаторов, высоких энергий (см. Плазмохимия, Радиационная химия), а также более широкое использование (в строго контролируемых условиях) микроорганизмов и очищенных ферментов. В 70-е гг. появились работы по применению ЭВМ для целей оптимизации многостадийного С. х.

Разработка и совершенствование синтетич. методов позволили получать мн. важные хим. продукты в пром. масштабах. В неорганической химии - это синтезы азотной кислоты, аммиака, серной кислоты, соды, различных комплексных и других соединений. Налажено многотоннажное произ-во органич. веществ, используемых в различных отраслях хим. пром-сти (см. Основной органический синтез), а также продуктов тонкого органич. синтеза (гормонов, витаминов).

Лит.: Реутов О. А., Органический синтез, 3 изд., М., 1954; Перспективы развития органической химии, пер. с англ. и нем., под ред. А. Тодда, М., 1959; К р а м Д., Хеммонд Д ж., Органическая химия, пер. с англ., М., 1964. См. также лит. при статьях, ссылки на к-рые даны в тексте. С. А. Погодин, Э. П. Серебряков.

СИНТЕЗАТОР частот, устройство для получения электрических гармонических колебаний с требуемыми частотами линейным преобразованием (умножением или делением на постоянные коэффициенты, сложением, вычитанием) постоянных частот исходных колебаний, создаваемых одним или несколькими опорными генераторами. С. служат источниками стабильных (по частоте) колебаний в радиопередатчиках, супергетеродинных радиоприёмниках, измерителях частот и других устройствах, требующих настройки на разные частоты в пределах частотных диапазонов, соответствующих назначению устройства. Синтез частот обеспечивает их более высокую точность и стабильность, чем перестройка частоты изменением индуктивности и ёмкости колебательного контура.

Применяемые в С. опорные генераторы с термостатированными кварцевыми резонаторами (см. Кварцевый генератор) обладают очень высокой стабильностью частоты (10-8 и выше), что предопределяет столь же высокую стабильность частот синтезируемых колебаний. Действие С. обычно основывается либо на выделении (при помощи электрических фильтров) отд. гармоннч. колебаний опорного генератора (номера выбираемых гармоник определяются цифрами в разных порядках числового значения синтезируемой частоты), либо (преимущественный способ) на синхронизации двух колебаний: полученных в результате деления осн. частоты опорного генератора делителем частоты с постоянным коэфф. деления и полученных в результате деления частоты др. генератора - с фазовой автоматич. подстройкой частоты - цифровым делителем с переменным коэфф. деления. В С. можно устанавливать дискретные значения частоты (в пределах рабочего диапазона) через определённые, достаточно малые интервалы, напр. через 1 кгц, 100 гц, 10 гц или менее. Установку частоты осуществляют, как правило, декадным набором цифр её числового значения при помощи дисков, ручек или кнопок (поэтому такой С. наз. декадным). В ряде случаев значение синтезированной частоты отображается на цифровом электронном индикаторе.

Лит.: Чистяковы. И., Декадные синтезаторы частот, М., 1969. Н. И. Чистяков.

СИНТЕТАЗЫ, тривиальное (не систематическое) название ферментов класса лигаз. В отличие от синтаз (см. Лиазы), осуществляют реакции конденсации, сопровождающиеся расщеплением богатых энергией связей в нуклеозидтрифосфатах (АТФ и др.).

СИНТЕТИЧЕСКИЕ ВОЛОКНА, см.Волокна синтетические.

СИНТЕТИЧЕСКИЕ И ИСКУССТВЕННЫЕ ПИЩЕВЫЕ ПРОДУКТЫ, пищ. продукты, как правило, высокой белковой ценности, создаваемые новыми технологич. методами на основе отдельных пищ. веществ (белков или составляющих их аминокислот, углеводов, жиров, витаминов, микроэлементов и др.); по внешнему виду, вкусу и запаху обычно имитируют натуральные пищ. продукты.

Синтетические пищевые продукты (СПП) - продукты, получаемые из химически синтезированных пищ. веществ. Совр. синтетич. органическая химия в принципе позволяет синтезировать любые пищ. вещества из отдельных химич. элементов, однако сложность синтеза высокомолекулярных соединений, к к-рым относятся биополимеры пищи, особенно белков и полисахаридов (крахмал, клетчатка), делает произ-во СПП на совр. этапе экономически нецелесообразным. Поэтому пока из продуктов хим. синтеза в питании используются низкомолекулярные витамины и аминокислоты. Синтетич. аминокислоты и их смеси применяются как добавки к натуральным пищ. продуктам для повышения их белковой полноценности, а также в лечебном питании (в т. ч. для внутривенного введения больным, нормальное питание к-рых затруднено или невозможно).

Мировой дефицит полноценного пищ. белка (содержащего все незаменимые, т. е. не синтезируемые организмом, аминокислоты), затрагивающий 3/4 населения земного шара, ставит перед человечеством неотложную задачу поиска богатых, доступных и дешёвых источников полноценного белка для обогащения натуральных и создания новых, т. н. искусственных, белковых продуктов. Искусственные пищевые продукты (ИПП) - продукты, богатые полноценным белком, получаемые на основе натуральных пищ. веществ путём приготовления смеси растворов или дисперсий этих веществ с пищ. студнеобразователями и придания им определённой структуры (структурирование) и формы конкретных пищ. продуктов. Ныне для произ-ва ИПП используются белки из двух осн. источников: белки, выделяемые из нетрадиционного натурального пищ. сырья, запасы к-рого в мире достаточно велики,-растительного (бобы сои, арахиса, семена подсолнечника, хлопчатника, кунжута, рапса, а также жмыхи и шроты из семян этих культур, горох, клейковина пшеницы, зелёные листья и другие зелёные части растений) и животного (казеин молока, малоценные сорта рыбы, криль и другие организмы моря); белки, синтезируемые микроорганизмами, в частности различными видами дрожжей. Исключит. скорость синтеза белка дрожжами (см. Микробиологический синтез) и их способность расти как на пищевых (сахара, пивное сусло, жмых), так и на непищевых (углеводороды нефти) средах делают дрожжи перспективным и практически неисчерпаемым источником белка для произ-ва ИПП заводскими методами. Однако широкое применение микробиологич. сырья для произ-ва пищ. продуктов требует создания эффективных методов получения и переработки высокоочищенных белков и тщательных медико-биологич. исследований. В связи с этим белок дрожжей, выращиваемых на отходах с. х-ва и углеводородах нефти, используется в основном в виде дрожжей кормовых, для подкормки с.-х. животных.

Идеи о получении СПП из отдельных химич. элементов и ИПП из низших организмов высказывались ещё в кон. 19 в. Д. И. Менделеевым и одним из основателей синтетич. химии П. Э. М. Бертло. Однако практическая их реализация стала возможной лишь в нач. 2-й пол. 20 в. в результате достижений молекулярной биологии, биохимии, физич. и коллоидной химии, физики, а также технологии переработки волокнообразующих и плёнкообразующих полимеров и развития высокоточных физико-химич. методов анализа многокомпонентных смесей органич. соединений (газо-жидкостная и другие виды хроматографии, спектроскопия и т. п.).

В СССР широкие исследования по проблеме белковых ИПП начались в 60-70-х гг. по инициативе акад. А. Н. Несмеянова в Ин-те элементоорганич. соединений (ИНЭОС)АН СССР и развивались в трёх осн. направлениях: разработка экономически целесообразных методов получения изолированных белков, а также отдельных аминокислот и их смесей из растит., животного и микробного сырья; создание методов структурирования из белков и их комплексов с полисахаридами ИПП, имитирующих структуру и вид традиционных пищ. продуктов; исследование натуральных пищ. запахов и искусств. воссоздание их композиций.

Разработанные методы получения очищенных белков и смесей аминокислот оказались универсальными для всех видов сырья: механич. или химич. разрушение оболочки клетки и извлечение фракционным растворением и осаждением соответствующими осадителями всего белка и других клеточных компонентов (полисахаридов, нуклеиновых к-т, липидов вместе с витаминами); расщепление белков ферментативным или кислотным гидролизом и получение в гидролизате смеси аминокислот, очищаемой с помощью ионообменной хроматографии, и др. Исследования по структурированию позволили получить искусственно на основе белков и их комплексов с полисахаридами все осн. структурные элементы естеств. пищ. продуктов (волокна, мембраны и пространственные набухающие сетки из макромолекул) и разработать способы получения многих ИПП (зернистой икры, мясоподобных продуктов, искусств. кар-тофелепродуктов, макаронных и крупяных изделий). Так, белковая зернистая икра готовится на основе высокоценного молочного белка казеина, водный раствор к-рого вводят вместе со структурообразователем (напр., желатиной) в охлаждённое растит. масле, в результате чего образуются "икринки". Отделив от масла, икринки промывают, дубят экстрактом чая для получения эластичной оболочки, окрашивают, затем обрабатывают в растворах кислых полисахаридов для образования второй оболочки, добавляют соль, композицию веществ, обеспечивающих вкус и запах, и получают деликатесный белковый продукт, практически неотличимый от натуральной зернистой икры. Искусств. мясо, пригодное для любых видов кулинарной обработки, получают методом экструзии (продавливания через формующие устройства) и мокрого прядения белка для превращения его в волокна, к-рые затем собирают в жгуты, промывают, пропитывают склеивающей массой (студнеобразователем), прессуют и режут на куски. Жареный картофель, вермишель, рис, ядрицу и другие немясные продукты получают из смесей белков с натуральными пищ. веществами и студнеобразователями (альгинатами, пектинами, крахмалом). Не уступая по органолептич. свойствам соответствующим натуральным продуктам, эти ИПП в 5-10 раз превосходят их по содержанию белка и обладают улучшенными технологич. качествами. Запахи при совр. технике исследуются методами газожидкостной хроматографи и воссоздаются искусственно из тех же компонентов, что и в натуральных пищ. продуктах.

Исследования в области проблем, связанных с созданием СПП и ИПП, в СССР ведутся в ИНЭОС АН СССР совместно с Ин-том питания АМН СССР, Моск. ин-том нар. х-ва им. Г. В. Плеханова, Н.-и. ин-том общественного питания Мин-ва торговли СССР, Всесоюзным н.-и. и экспериментально-конструкторским ин-том продовольственного машиностроения, Всесоюзным н.-и. ин-том морского рыбного х-ва и океанографии и др. Разрабатываются методы заводской технологии ИПП для внедрения лабораторных образцов в промышленное производство.

За рубежом первые патенты на произ-во искусств. мяса и мясоподобных продуктов из изолированных белков сои, арахиса и казеина были получены в США Ансоном, Педером и Боэром в 1956-63. В последующие годы в США, Японии, Великобритании возникла новая пром-сть, производящая самые разнообразные ИПП (жареное, заливное, молотое и другое мясо разных видов, мясные бульоны, котлеты, колбасы, сосиски и другие мясопродукты, хлеб, макаронные и крупяные изделия, молоко, сливки, сыры, конфеты, ягоды, напитки, мороженое и др.). В США, на долю к-рых приходится почти 75% мирового произ-ва сои, выпуск ИПП на основе соевых белков достигает сотен тыс. т. В Японии и Великобритании для производства ИПП используются в основном растит. белки (в Великобритании в экспериментах начато изготовление искусств. молока и сыров из зелёных листьев растений). Осваивается промышленное производство ИПП другими странами. По зарубежным статистическим данным, к 1980-90 производство ИПП в экономически развитых странах составит 10-25% произ-ва традиционных пищ. продуктов.

Лит.: Менделеев Д. И., Работы по сельскому хозяйству и лесоводству, М., 1954; Несмеянов А. Н. [и др.]. Искусственная и синтетическая пища, "Вестник АН СССР", 1969, № 1; Питание увеличивающегося населения земного шара: рекомендации, касающиеся международных мероприятий, имеющих целью предупредить угрозу недостатка белка, Нью-Йорк, 1968 (ООН. Экономический и социальный Совет. Е 4343); Food: readings from scientific American, S. F., 1973; World protein resources, Wash., 1966. С. В. Рогожин.



К ст. Символизм. 1. Ф. Ходлер (Швейцария). 4Взгляд в бесконечность". 1916. Кунстхауз. Цюрих. 2. Ф. Штук (Германия). "Война". 1894. Баварские государственные собрания картин. Мюнхен. 3. Г. К л им т (Австрия). "Поцелуй" (картон для мозаики во Дворце столетия в Брюсселе). Акварель, гуашь. 1905-06. Австрийский музей художественных ремёсел. Вена. 4. О. Бёрдсли (Великобритания). "Павлинья юбка" (иллюстрация к "Саломее" О. Уайльда). Рисунок тушью. 1894. 5. Э. Мунк (Норвегия). "Танец жизни". 1899. Национальная галерея. Осло. 6. О. Ре дон (Франция). "Глаз как шар". Рисунок углём. Около 1890. 7. М. Дени (Франция). "Музы". 1893. Музей современного искусства. Париж. 8. П. В. Кузнецов (Россия). "Голубой фонтан". Темпера. 1905. Третьяковская галерея. Москва. 9. Ж. Минне (Бельгия). "Фонтан коленопреклонённых". Мрамор. 1898. фолькванг-музей. Хаген.

К ст. Сингапур. 1. Река Сингапур. 2. Жилой комплекс Тенглин-холт. 1969-70. 3. Отель "Мин-корт". 1960-е гг. 4. Большая мечеть. 18-19 вв. S. Китайский храм. 19 в. 6. Индуистский храм. 19 - нач. 20 вв. 7. Площадь Эмпресс-плейс. Застройка 19 в. (архитектор Т. Рафлс и др.). 8. Собор Сент-Андру. 1862.

К ст. Синтез искусств. 1. Комната дома Веттиев в Помпеях с росписью IV помпейского стиля и мифологическими сценами. Древний Рим. 63-79 гг. 2. Портал храма Боробудур с мифологической фигурой ''кала-макара''. Индонезия. Около 800. 3. Центральный портал готического собора в Амьене. Франция. 1225-36. 4. Ф. К ю в и л ь е. "Зеркальный зал" во дворце Амалиенбург близ Мюнхена. 1734-39. 5. Микеланджело. Гробница Лоренцо Медичи в Новой сакристии церкви Сан-Лоренцо во Флоренции. 1520-34. в. Благовещенский собор в Московском Кремле. 1484-89. Роспись работы Феодосия, 1508. 7. Лестничная пристройка Теремного дворца в Московском Кремле. 1637.

К ст. Синтез искусств. 1. А. Н. Воронихи н. ''Фонарик'' во дворце в Павловске. 1807. Кариатида работы В. И. Демут-Малиновского, 1803-05. 2. А. Н. Б е н у а и Е. Е. Л а н с е р е. Столовая на выставке "Современное искусство" в Петербурге. 1903. 3. А. В. В а с н е ц о в. Мозаика "Космос" в Музее истории космонавтики им. К. Э. Циолковского в Калуге. 1967. 4. Я. Жилите, А. Степонавичюс. Роспись детского кафе "Никштукаc'' в Вильнюсе. Темпера. 19ЬЗ.

К ст. Сирия. 1. Храм Бела в Пальмире. 1 в. 2. Цитадель в Халебе. 12-13 вв. 3. Галерея замка Крак-де-Шевалье. 12 в. 4. Базилика св. Симеона Столпника в монастыре Калъат-Семан. 3-я четв. 5 в. 5. Минарет мечети в Рамле. 12 в. 6. Мелеть Такия Сулеймания в Дамаске. 1554. 7. Двор мечети Омейядов в Дамаске. 705-715. 8. С. М у д а р р и с и др. Университет в Халебе. 1968-69.

К ст. Сирия. 1. Надгробие из Пальмиры. Известняк. Первые века н. э. Лувр. Париж. 2. Мозаика мечети Омейядов в Дамаске. 70S- 715. 3. Фрагмент росписей замка Каср аль-Хейр аль-Гарби. 8 в. Национальный музей. Дамаск. 4. Глазурованное блюдо. 12 в. Метрополитен-музей. Нью-Йорк. 5. Миниатюра из рукописи "Калила и Димна''. 1200-20. Национальная библиотека. Париж, 6. Миниатюра из "Евангелия Рабулы>. 586. Библиотека Лауренциана. Флоренция. 7. Шёлковая ткань. 13 в. Эрмитаж. Ленинград. 8. Бурхан Коркотли. "Защитим Сирию!". Ксилография. 1971. 9. Л у а и К а я л и. "На базаре". 1960-е гг.

К ст. Скифы. 1. Обивка сосуда с изображением орла. 2. Обкладка топора. 3. Напершие в виде головы быка. Бронза. 4. Бляшка с изображением скифа, охотящегося на зайца. 5. Конский налобник с изображением богини. 6. Бляшка с изображением скифов, охотящихся с луками. 7. Бляшка с изображением волка. 8. Бляшка с изображением животных. 9. Бляшка с изображением богини. (1, 2, 4-9 - золото; все - 7-2 вв. до н. э., Эрмитаж, Ленинград.)



СИНТЕТИЧЕСКИЕ КРИСТАЛЛЫ, кристаллы, выращенные искусственно в лабораторных или заводских условиях. Из общего числа С. к. ок. 104 относятся к неорганич. веществам. Нек-рые из них не встречаются в природе. Однако первое место занимают органич. С. к., насчитывающие сотни тысяч разнообразных составов и вообще не встречающиеся в природе. С другой стороны, из 3000 кристаллов, составляющих многообразие природных минералов, искусственно удаётся выращивать только неск. сотен, из к-рых для практич. применения существенное значение имеют только 20 -30 (см. табл.). Объясняется это сложностью процессов кристаллизации и технич. трудностями, связанными с необходимостью точного соблюдения режима выращивания монокристаллов.

Первые попытки синтеза кристаллов, относящиеся к 16-17 вв., состояли в перекристаллизации воднорастворимых кристаллич. веществ, встречающихся в виде кристаллов в природе (сульфаты, галогениды).

После расшифровки состава природных минералов появились попытки синтеза минералов из порошков с использованием техники обжига. Этим методом были получены мелкие С. к. В нач. 20 в. синтезом кристаллов занимались Е. С. Фёдоров и Г. В. Вулъф, к-рые исследовали условия кристаллизации воднорастворимых соединений и усовершенствовали аппаратуру. В дальнейшем А. В. Шубников разработал общие принципы образования кристаллов из водных растворов [сегнетова соль, дигидрофосфат калия и др., см. рис. 1, а также рис. 1, 2 на вклейке, табл. XVII (стр. 432-433)] и из расплавов (однокомпонентных и многокомпонентных систем), под его руководством была создана первая фабрика С. к.

Рис. 1. Синтетические водорастворимые кристаллы.

С. к. кварца получают в гидротермальных условиях. Маленькие "затравочные" кристаллы различных кристаллографич. направлений вырезаются из природных кристаллов кварца. Хотя кварц широко распространён в природе, однако его природные запасы не покрывают нужд техники, кроме того, природный кварц содержит много примесей. С. к. кварца массой до 15 кг выращивают в автоклавах в течение многих месяцев, а особо чистые кристаллы (оптический кварц) растут неск. лет (рис. 3, 4 на вклейке).


Наиболее распространённые синтетические кристаллы

Название

Химическая формула

Методы выращивания

Средняя величина кристаллов

Области применения



Кварц

SiO2

Гидротермальныц

От 1 до 15 кг, 300X200X150 мм

Пьезоэлектрич. преобразователи, ювелирные изделия, оптич. приборы



Корунд

А120з

Методы Вернейля и Чохральского, зонная плавка

Стержни диам. 20-40 мм, дл. до 2 м, пластинки 200X300X30 мм

Приборостроение, часовая пром-сть, ювелирные изделия



Германий

Ge

Метод Чохральч ского

От 100 г до 10 кг, цилиндры 200 мм х 500 мм

Полупроводниковые приборы



Кремний

Si

То же

"

То же



Галогениды

КС1, NaCl

"

От 1 до 25 кг, 100X100X600 мм

Сцинтилляторы



Сегнетова соль

KNaC4H4O6 х 4H2O

Кристаллизация из растворов

От 1 до 40 кг, 500X500X300 мм

Пьезоэлементы



Дигидрофосфат калия

KH2PO4

То же

От 1 до 40 кг, 500X500X300 мм

"



Алюмоиттриевый гранат

Y3Al5O12

Метод Чохральского, зонная плавка

40X40X150 мм 30X200X150 мм

Лазеры, ювелирные изделия



Иттриево-железистый гранат

Y3Fe5012

Кристаллизация из растворов-расплавов

30X30X30 мм

Радиоакустическая пром-сть, электроника



Гадолиний-галлиевый гранат

Gd3Ga5O12

Метод Чохральского

20X30X100 мм

Подложки для магнитных плёнок



Алмаз

С

Кристаллизация при сверхвысоких давлениях

От 0,1 до 3 мм

Абразивная пром-сть



Ниобат лития

LiNbO3

Метод Чохральского

10X10X100 мм

Пьезо- и сегнетоэлементы



Нафталин

C10H8

Метод Киропулоса

Блоки в неск. кг

Сцинтнлляционные приборы



Би фталат

калия

C8H5O4K

Кристаллизация из водных растворов

40X100X100 мм

Рентгеновские анализаторы, нелинейная оптика



Кальцит

СаСОз

Гидротермальный

10X30X30 мм

Оптич. приборы



Сульфид кадмия

CdS

Рост из газовой фазы

Стержни 20X20X100 мм

Полупроводниковые приборы



Сульфид цинка

ZnS

То же

Стержни 20X20X100 мм

То же



Арсенид галлия

GaAs

Газотранспортные реакции

Стержни 20X20X100 мм

"



Фосфид галлия

GaP