БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

РУМЫНСКАЯ АКАДЕМИЯ, Академия Социалистической Республики Румынии (Academia Republicii Socialiste Romania).
САМООБРАЗОВАНИЕ, самостоятельное образование, приобретение систематич. знаний.
СЕВЕРНАЯ ЗЕМЛЯ, архипелаг на границе Карского м. и моря Лаптевых.
СИВАЛИКСКИЕ ГОРЫ, Сивалик, Предгималаи в Индии и Непале.
СМОЛЕНСКОЕ КНЯЖЕСТВО, др.-рус. княжество, занимавшее терр. по верх. течению Днепра.
COЮЗHOE СОБРАНИЕ, в Швейцарии высший федеральный законодат. орган.
СТОКГОЛЬМСКАЯ КРОВАВАЯ БАНЯ (швед. Stockholms blodbad).
ВНЕШНЯЯ ТОРГОВЛЯ И ВНЕШНИЕ ЭКОНОМИЧЕСКИЕ СВЯЗИ .
15-18 апреля - 13-й съезд ВЛКСМ. .
Раздача продуктов голодающим. Самара. 1921. .


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

2168119023552133509201и т. п.

Дуговая резка, выполняемая как угольным, так и металлическим электродами, применяется при монтажных и ремонтных работах (напр., в судостроении). Для поверхностной обработки и строжки металлов используют воздушно-дуговую резку, при к-рой металл из реза выдувается струёй воздуха, что позволяет существенно улучшить качество резки.

Резку можно выполнять высокотемпературной плазменной струёй. Для резки и прожигания отверстий перспективно применение светового луча, струи фтора, лазерного излучения (см. Лазерная технология).

Дальнейшее развитие и совершенствование методов сварки и резки связано с внедрением и расширением сферы применения новых видов обработки -плазменной, электронной, лазерной, с разработкой совершенных технологич. приёмов и улучшением конструкции оборудования. Возможно значит, расширение использования С. и резки для подводных работ и в космосе. Направление прогресса в области сварочной техники характеризуется дальнейшей механизацией и автоматизацией осн. сварочных работ и всех вспомогат. работ, предшествующих С. и следующих за ней (применение манипуляторов, кантователей, роботов). Актуальной является проблема улучшения контроля качества С., в т. ч. применение аппаратов с обратной связью, способных регулировать в автоматич. режиме работу сварочных автоматов. См. также Вибрационная (вибродуговая) наплавка, Высокочастотная сварка, Взрывная сварка, Диффузионная сварка, Конденсаторная сварка, Термитная сварка, Электролитическая сварка, Сварка пластмасс, Сварка в космосе.



Лит.: Справочник по сварке, т. 1 - 4, М., 1960-71; Г л и з м а н е н к о Д. Л., Е в с е е в Г. Б., Газовая сварка и резка металлов, 2 изд., М., 1961; Технология электрической сварки плавлением, под ред. Б. Е. Патона, М.- К., 1962; Багрянский К. В., Добротина 3. А., Хренов К. К., Теория сварочных процессов, Хар., 1968; Хренов К. К., Сварка, резка и пайка металлов, 4 изд., М., 1973; Словарь-справочник по сварке, сост. Т. А. Кулик, К., 1974.

К. К. Хренов.

СВАРКА В ЗАЩИТНЫХ ГАЗАХ, дуговая сварка, при к-рой в зону соединения подаются защитные газы (см. Сварочные материалы) для предотвращения воздействия воздуха на металл шва. Газовая защита способствует также устойчивому горению дуги, улучшает условия формирования шва, повышает его качество.

СВАРКА В КОСМОСЕ, отличается необычными сложными условиями: вакуум до 10-10 н/м2 (10-12 мм рт. ст.), большая скорость диффузии газов, невесомость и широкий интервал температур (от -150 до 130 °С). Вследствие высокого вакуума и относительно высокой темп-ры в космич. условиях иногда происходит самопроизвольная диффузионная сварка (схватывание) плотно сжатых деталей. При конструировании космич. аппаратов предусматривают различные защитные меры, предотвращающие это явление. В космич. условиях сварка может применяться при сборке и монтаже крупных космических кораблей и орбитальных станций, ремонте оборудования и аппаратуры космич. аппаратов, а также для изготовления материалов и изделий с особыми свойствами, к-рые не могут быть получены на Земле. Металлы, свариваемые в условиях космич. пространства,- алюминий, титановые сплавы, нержавеющие и жаропрочные стали. Условия космич. пространства чрезвычайно благоприятны для след, видов сварки: диффузионной, холодной, электроннолучевой, контактной и гелиосварки. Выполнение же дуговой и плазменной сварки, особенно при большом объёме сварочной ванны, хотя и перспективно, но в ряде случаев технически значительно затруднено из-за невесомости, когда изменяются условия разделения жидкой, твёрдой и газообразной фаз, что может привести к появлению пористости в швах, увеличению неметаллич. включений и т. п.

Большой градиент темп-ры в ряде случаев вызывает появление трещин. Преодоление неблагоприятных воздействий космич. среды требует разработки спец. приёмов сварки и оборудования, к-рое должно отличаться высокой надёжностью и безопасностью, иметь небольшую массу, обладать низкой энергоёмкостью, а также быть простым в эксплуатации. Особенно пригодны автоматич. и полуавтоматич. сварочные установки.

Впервые в мире С. в к. была осуществлена 16 окт. 1969 лётчиками-космонавтами космич. корабля "Союз-6" В. Н. Кубасовым и Г. С. Шониным на автоматич. установке "Вулкан", сконструированной в Ин-те электросварки им. Е. О. Патона. В. Ф. Лапчинский,

СВАРКА ПЛАСТМАСС, процесс неразъёмного соединения термопластов и реактопластов, в результате к-рого исчезает граница раздела между соединяемыми деталями. Сварку термопластов производят с использованием тепла посторонних источников нагрева (газовых теплоносителей, нагретого присадочного материала, нагретого инструмента) или с генерированием тепла внутри пластмассы при преобразовании различных видов энергии (сварка трением, токами ВЧ, ультразвуком, инфракрасным излучением и др.).

Соединение реактопластов осуществляют способом, основанным на хим. взаимодействии между поверхностями непосредственно или с участием присадочного материала (т. н. химическая сварка). Осуществление этого способа требует интенсивного прогрева поверхностей и интенсификации колебаний звеньев молекул полимера токами ВЧ или ультразвуком. С. п., напр. плёночных и листовых материалов, внедряется в различных областях пром-сти и стр-ва.

Лит.: Николаев Г. А., Ольшанский Н. А., Новые методы сварки металлов и пластмасс, М., 1966; Т р о с т я н с к а я Е. Б., Комаров Г. В., Шишкин В. А., Сварка пластмасс, М., 1967; Волков С. С., Орлов Ю. Н., Астахова Р. Н., Сварка и склеивание пластмасс, М., 1972. Л. М. Лобанов.

СВАРКА ПОД ФЛЮСОМ, дуговая сварка с применением для защиты сварочной ванны от воздействия воздуха и для улучшения формирования сварного шва спец. сварочного материала - флюса. Этот способ обеспечивает постоянство режима, позволяет увеличить сварочный ток до 1000-2000 а, получить большую глубину проплавления материала и высокое качество сварного шва по всей длине.

СВАРНЫЕ СОЕДИНЕНИЕ, участок конструкции или изделия, на к-ром сваркой соединены между собой составляющие их элементы, выполненные из однородного или разнородных материалов.

Классификация С. с. и швов. По взаимному расположению соединяемых элементов различают стыковые, тавровые, нахлёсточные и угловые С. с. Каждое из них имеет специфич. признаки в зависимости от выбранного способа сварки - дуговой (рис. 1), электрошлаковой (рис. 2), контактной (рис. 3) и др. Участок С. с., непосредственно связывающий свариваемые элементы, наз. сварным швом. Швы всех типов различают: по технике наложения -выполненные "напроход", от середины к концам, обратноступенчатым способом; по положению в пространстве при сварке - вертикальные, горизонтальные, нижние, потолочные; по технике образования сечения - однослойные и многослойные и т. д. Осн. виды С. с., конструктивные элементы кромок и швов, предельные отклонения и рациональные диапазоны толщин соединяемых элементов для швов всех типов регламентированы гос. стандартами и отраслевыми нормалями.

Характеристика С. с. Для С. с. свойственна совокупность зон, образующихся в материале соединённых сваркой элементов. Зоны отличаются от осн. материалов и между собой по хим. составу, структуре, физ. и механич. свойствам, микро- и макронапряжённости. К С. с., выполненному сваркой плавлением, относят зоны (рис. 4, а) материала шва (сварной шов), сплавления, термич. влияния, прилегающего осн. материала, сохраняющего свои свойства и структуру. С. с., выполненное сваркой давлением, зон материала шва и сплавления не имеет и состоит (рис. 4, б) из зоны соединения, в к-рой образовались межатомные связи соединённых элементов, зоны механич. влияния, зоны прилегающего осн. материала.

В сварном шве материал представляет собой сплав, образованный переплавленными осн. материалами и дополнит, электродным и присадочным материалами или только переплавленными осн. материалами. В зоне термического влияния осн. материал не претерпевает расплавления, но на отд. участках в результате воздействия нагрева и охлаждения по-разному изменяет свойства и структуру.

Рис. 1. Виды сварных соединений и типы швов при дуговой сварке : а - стыковое; б - тавровое; в, г, д - нахлёсточные; е - угловое; 1 - стыковой шов; 2 - угловой шов таврового соединения; 3 -фланговый угловой шов нахлёсточного соединения; 4 - лобовой угловой шов нахлёсточного соединения; 5 - электрозаклёпочный шов нахлёсточного соединения; 6 - шов углового соединения.

Рис. 2. Виды сварных соединений и типы швов при электрошлаковой сварке: а -стыковое; б - тавровое; в - угловое; 1 -стыковой шов; 2 - угловой шов; 3 -шов углового соединения.

В наиболее общем случае сварки плавлением низкоуглеродистой стали зона термич. влияния С. с. состоит из участков, показанных на рис. 5. Участок перегрева / примыкает непосредственно к зоне сплавления. Материал на этом участке перегрева нагревается выше 1100 °С и приобретает крупнозернистую структуру, что обусловливает понижение его вязкости. На участке перекристаллизации (нормализации) II материал нагревается в интервале темп-р от 900 до 1100 °С, что вызывает значит, измельчение зерна и повышение вязкости.

Рис. 3. Виды сварных соединений и типы швов при контактной сварке а - стыковое при сварке сопротивлением; 6 -стыковое при сварке плавлением; в -нахлёсточное, выполненное_ однорядным точечным швом; г - нахлёсточное, выполненное многорядным точечным швом; д - нахлёсточное, выполненное однорядным роликовым швом.

Рис. 4. Сварное соединение; / - сварной шов; 2 - зона сплавления (а) или соединения при сварке давлением (б); 3 - зона термического влияния; 4 - прилегающий основной материал.

Рис. 5. Схемы зоны термического влияния: I - участок перегрева; II - участок перекристаллизации (нормализации); III - участок частичной перекристаллизации; IV - участок рекристаллизации; V - участок старения; 1 - металл шва; 2 - зона сплавления.

На участке частичной перекристаллизации 111 металл нагревается в интервале темп-р от 700 до 900 °С и характеризуется неравномерностью структуры или частичным измельчением зерна. На участке рекристаллизации IV при нагреве материала от 500 °С до темп-ры, соответствующей критической точке At, наблюдается снижение прочности, в нек-рых случаях - уменьшение пластичности. На участке старения V при нагреве от 100 до 500 °С материал не имеет видимых изменений структуры, но отличается от исходного осн. материала пониженной вязкостью, наиболее резко выраженной в интервале 100-300 °С.

Ширина зоны термич. влияния при сварке стали зависит от способа сварки, технологич. процесса, теплового режима сварки, теплофизич. свойств осн. металла.

Свойства С. с. Качество С. с. определяется их работоспособностью, сопротивляемостью хрупким и усталостным разрушениям. Работоспособность С. с. характеризуется комплексной совокупностью свойств чередующихся зон -прослоек, отличающихся от осн. материала и между собой прочностными свойствами. Прослойки с более высокими прочностными свойствами условно называют твёрдыми, а смежные с ними прослойки с более низкими прочностными свойствами - мягкими. В зависимости от свойств осн. материала, сварочных материалов, способа и режима сварки и термообработки, а также температурно-скоростных условий нагружения мягкими прослойками могут быть сварной шов, зона сплавления, разупрочнённый участок зоны термич. влияния, промежуточные вставки других (разнородных с основным) материалов.

Рис. 6. Временные п остаточные продольные деформации и напряжения в стыковом соединении пластины из углеродистой стали: а - пластина; 6 - эпюра временных деформаций при емакс<еТ; в - эпюра временных деформаций при емакс>еТ: г - эпюра остаточных деформаций еост; д - эпюра остаточных напряжений бт 1 -зона пластических деформаций сжатия; 2 - зона упругих деформаций; 3 и 4 - растягивающие и сжимающие напряжения и деформации.

Мягкие прослойки - локализаторы деформаций; при весьма малой относительной толщине они не снижают несущей способности С. с., при сравнительно большой толщине их свойства ограничивают несущую способность С. с. При расчёте, проектировании и изготовлении сварных конструкций учитывают степень влияния напряжённо-деформационного состояния на работоспособность С. с., точность их размеров и формы, а также на стабильность этих качеств при эксплуатации. При этом различают зону пластических деформаций, зону упругих деформаций, собственные остаточные напряжения (растягивающие и сжимающие). Эпюры, на к-рых показаны временные и остаточные продольные деформации и напряжения в стыковом соединении пластины из углеродистой стали, представлены на рис. 6.

Сопротивляемость С. с. хрупким и усталостным разрушениям зависит от свойств материала и наличия в них концентраторов напряжений и деформации. Концентраторы бывают конструктивного происхождения (участок резкого изменения сечения С. с., напр, переход от шва к осн. металлу в тавровом и нахлёсточном соединениях), тех-нологич. происхождения (неплавные переходы с входящими углами в месте усиления шва, непровары, несплавления и подрезы), физико-химического происхождения (поры, шлаковые включения, трещины в швах и зоне термического влияния).

Образованию С. с. сопутствует термо-пластич. процесс деформирования осн. материала, к-рый наиболее ярко выражен для стальных сварных соединений. Этот процесс обусловливает появление хрупкости на нек-рых участках зоны термич. влияния. Наиболее хрупким становится металл вследствие старения, протекающего в процессе деформирования металла при темп-рах 150-300 °С. На этих участках С. с. имеют ограниченную сопротивляемость хрупким разрушениям.

Образование С. с. сопровождается уменьшением размеров соединяемых элементов в продольном и поперечном направлениях, т. е. продольной и поперечной усадкой, что учитывается при проектировании и изготовлении изделий.

Принципы расчёта С. с. В СССР применяют два метода расчёта С. с. на прочность при статическом нагружении: по предельному состоянию (в строит. конструкциях) и по допускаемым напряжениям (в машиностроении). Для С. с. из сталей различной прочности расчётные сопротивления на растяжение RPca, сжатие Rссв, срез в стыковых швах Rсрсв срез в угловых швах Rусв, а также допускаемые напряжения на растяжение и сжатие [бсв]-сигма и срез [tсв]-тау установлены отраслевыми правилами и нормами проектирования конструкций. Расчёт на усталость С. с. маш.-строит, металлоконструкций выполняется согласно общепринятым методам расчёта на усталость деталей машин. Влияние низких темп-р на работоспособность соединения может быть учтено при проектировании и изготовлении С. с. выбором осн. и сварочных материалов, конструктивных и технологич. решений, методов контроля качества материалов и т. п. В расчётах С. с. на прочность при статич. нагрузке влияние концентраторов напряжений и темп-ры для обычных углеродистых и низколегированных сталей не учитывают. В расчётах С. с. на усталостную прочность влияние концентраторов и остаточных напряжений учитывают при установлении допускаемых напряжений. С. с. пролётных строений мостов и стальных конструкций пром. сооружений рассчитывают на выносливость по предельному состоянию.

Лит.: Николаев Г. А., Сварные конструкции, 3 изд., М., 1962; Окерблом Н. О., Конструктивно-технологическое проектирование сварных конструкций, М. - Л., 1964; Николаев Г. А., Куркин С. А., Винокуров В. А., Расчет, проектирование и изготовление сварных конструкций, М., 1971; Труфяков В. И., Усталость сварных соединений, К., 1973. А. А. Казимиров.

СВАРНЫЕ КОНСТРУКЦИИ, метал-лич. конструкции зданий и сооружений, соединения элементов к-рых выполнены сваркой. В виде С. к. изготовляется примерно 95% совр. стальных конструкций, среди к-рых особенно эффективны листовые конструкции. С. к. имеют ряд преимуществ перед клёпаными; основные из них - экономия металла (до 25%) в результате более полного использования сечения и меньшего веса соединит, элементов, меньшая стоимость (благодаря применению относительно недорогого оборудования), плотность (герметичность сварочных швов).

СВАРОВСКАЯ ЗАБАСТОВКА 1870, забастовка ткачей на ф-ке нем. капиталиста Либига в Сварове (Svarov, Сев. Богемия, ныне город в Чешской Социа-листич. Республике) 18 февр.- 11 апр. Явилась протестом против уменьшения администрацией зарплаты на 10%. Рабочие требовали также сокращения 12-час. рабочего дня. Руководили С. з. рабочие, чл. местного с.-д. кружка. Бастовавших поддержали ткачи на ф-ках в Железни-Броде (также принадлежавших Либигу). 31 марта 3 тыс. рабочих, собравшихся перед ф-кой в Сварове, подверглись нападению войск и жандармов. Были раненые, 6 рабочих убито, организаторы С. з. арестованы. Расправа над участниками С. з. вызвала волну протеста в стране. Либигу пришлось принять все требования бастовавших.

СВАРОГ, в рус. и зап.-слав, мифологии один из гл. богов (бог неба, огня небесного). Отец бога земного огня Сваро-жича.

СВАРОЧНАЯ ГОРЕЛКА, часть сварочного аппарата, обеспечивающая при электросварке подвод электрич. тока к электроду и защитного газа в зону горения сварочной дуги, или устройство, применяемое при газовой сварке для регулируемого смешения газов и создания направленного сварочного пламени. Передвижение С. г. вдоль свариваемых кромок осуществляется вручную (при ручной или полуавтоматич. сварке) или может быть механизировано (при автоматической сварке). В С. г. для электросварки плавящимся электродом (рис. 1) имеется токоподводящий и направляющий мундштук со сменным наконечником, через к-рый проталкивается электродная проволока. Через сопло подводится и направляется газовая струя, защищающая сварочную ванну и электрод от воздействия воздуха.

Рис. 1. Горелка для полуавтоматической сварки плавящимся электродом: 1-мундштук; 2 - сменный наконечник; 3-электродная проволока; 4 - сопло.
Рис. 2. Ручная горелка для сварки не-< плавящимся электродом: / - токоподво-дящая цанга; 2 - сопло; 3 - газовая камера; 4 - мундштук; 5 - газовый вентиль; 6 - газовый канал и токопро-вод; 7 - рукоятка.

В С. г., применяемой при сварке неплавящимся электродом (рис. 2), мундштук снабжён зажимной токоподводящей цангой. С. г. для газовой сварки подаёт горючие газы (напр., ацетилен и кислород) к месту сварки. По двум каналам газы через регулировочные вентили поступают в смесит, камеру, в которой приготавливается горючая смесь, поступающая затем в мундштук. Различают горелки низкого давления со встроенным инжектором для подсоса горючего газа и горелки высокого давления, в к-рые горючий газ поступает из газовых генераторов или баллонов под давлением. Лит. см. при ст. Сварочное оборудование. М. Г. Бельфор.

СВАРОЧНАЯ ДУГА, электрическая дуга, образующаяся в зоне сварки (или резки) при прохождении электрич. тока через газ между электродами. С. д.-наиболее развитая форма разряда в газах (см. Дуговой разряд), характеризующаяся малым напряжением, большим током, наличием ионизации газов в дуговом промежутке.

Схема дугового разряда при сварке: 1 - катод; 2- столб дугового разряда; 3 - анод; 4 - пламя сварочной дуги.

Ионизируемый газ столба дугового разряда ярко светится и имеет темп-ру 6000-10 000 °С в осевой части столба разряда. Осн. фактор ионизации - высокая темп-pa, поддерживаемая притоком энергии из питающей цепи. Напряжение С. д., т. е. напряжение между концами электродов, существенно зависит от длины дуги, силы тока, материала и размера сварочных электродов, состава и давления газа и др. факторов. Для управления свойствами С. д. изменяют длину дуги от 0,01 до 1 см, силу тока от 0,5 до 3000 а, давление газа от 102 до 105н/м2(от 0,001 до 1 кгс/см2), материал, форму и размеры одного из электродов, защищают зону горения газами, сжимают дугу и т. д. Тепловая мощность С. д. лежит в пределах от 10 до 105вm при концентрации от 102 до 105 вт/см2. Широкий диапазон мощностей позволяет применять С. д. для сварки и резки различных материалов толщиной от 0,05 до 100 мм за один или неск. проходов. Г. И. Лесков.

СВАРОЧНОЕ ЖЕЛЕЗО, техническое железо, к-рое получали при старых способах производства непосредственно из жел. руды или чугуна (см. Кричный передел, Кричнорудный процесс, Пудлингование, Сыродутный процесс). Образовавшиеся в печи (или горне) тестообразные комья железа (крицы) состояли из кристаллов железа высокой чистоты, перемежавшихся с нек-рым количеством равномерно распределённых включений жидкого шлака. Извлечённую из печи (горна) горячую крицу подвергали ковке или прокатке, в результате чего из металла выдавливался шлак, а кристаллы железа сваривались (отсюда название). С. ж. характеризовалось высокими ме-ханич. свойствами (пластичностью, коро-эионной стойкостью, свариваемостью). В сер. 20 в. С. ж. практически вытеснено сталью.

СВАРОЧНОЕ ОБОРУДОВАНИЕ, машины, аппараты и приспособления, необходимые для изготовления из заготовок сварных изделий. Комплекс технологически связанного между собой С. о. для выполнения сварочных работ при том или ином участии сварщика наз. сварочным постом, установкой, а при объединении неск. постов или установок -линией.

Существуют посты и установки для дуговой, контактной, газовой, электроннолучевой и др. способов сварки. К С. о. относят: сварочные аппараты и машины с источниками питания и устройствами для выполнения собственно процесса сварки; технологич. приспособления для осуществления быстрой сборки деталей под сварку, удерживания их во время работы и предотвращения или уменьшения коробления свариваемого изделия; вспомогат. оборудование для перемещения изделий в процессе выполнения сварки, крепления и перемещения сварочных аппаратов; инструмент сварщика. Кроме того, при сварке используют различные транспортные средства, приборы для контроля качества сварного соединения и т. п. Техническая характеристика С. о. определяется выбранным способом сварки, характером производства и степенью механизации процесса (ручная, полуавтоматическая или автоматическая сварка).

Сварочный пост - участок производств, площади, на к-ром размещены источник тока, токопровод, необходимые технологич. приспособления и инструменты сварщика.

Рис. 1. Установка для дуговой автоматической сварки: 1 - сварочный аппарат; 2 - свариваемое изделие; 3 - шкаф с аппаратурой управления; 4 - источник тока; 5 - провода управления; 6 - токопровод; 7 - рельсовый путь; 8 - тележка с колонной; 9 - роликовый стенд; 10 - площадка обслуживания.

Для защиты окружающих от излучения участок огорожен шторами или щитами. В условиях совр. произ-ва широко распространены автоматизированные установки (рис. 1). Такие стационарные посты размещают в цехе. В полевых условиях, для сварки крупногабаритных изделий, на стр-ве, при выполнении ремонтных работ и т. п. организуют передвижные посты.

Сварочные аппараты и машины. В сварочные посты и установки входят источники питания и аппараты для регулирования горения сварочной дуги в процессе сварки. Для выполнения сварки применяют источники питания, к-рые имеют удобную, плавную или ступенчатую регулировку и удовлетворяют общим требованиям для электрич. машин и аппаратов. При электросварке используют сварочные трансформаторы, генераторы и выпрямители; при газопламенной обработке - газовые генераторы. Различают источники питания одно- и многопостовые, стационарные (длительная непрерывная работа) и малогабаритные переносные (непродолжительная работа).

Сварочный